Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6-3cos((pit)/2)>6

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6−3cos(2πt​)>6

Solution

1+4n<t<3+4n
+1
Interval Notation
(1+4n,3+4n)
Solution steps
6−3cos(2πt​)>6
Subtract 6 from both sides6−3cos(2πt​)−6>6−6
Simplify−3cos(2πt​)>0
Multiply both sides by −1
−3cos(2πt​)>0
Multiply both sides by -1 (reverse the inequality)(−3cos(2πt​))(−1)<0⋅(−1)
Simplify3cos(2πt​)<0
3cos(2πt​)<0
Divide both sides by 3
3cos(2πt​)<0
Divide both sides by 333cos(2πt​)​<30​
Simplifycos(2πt​)<0
cos(2πt​)<0
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(0)+2πn<2πt​<2π−arccos(0)+2πn
If a<u<bthen a<uandu<barccos(0)+2πn<2πt​and2πt​<2π−arccos(0)+2πn
arccos(0)+2πn<2πt​:t>1+4n
arccos(0)+2πn<2πt​
Switch sides2πt​>arccos(0)+2πn
Simplify arccos(0)+2πn:2π​+2πn
arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​+2πn
2πt​>2π​+2πn
Multiply both sides by 2
2πt​>2π​+2πn
Multiply both sides by 222πt​>2⋅2π​+2⋅2πn
Simplify
22πt​>2⋅2π​+2⋅2πn
Simplify 22πt​:πt
22πt​
Divide the numbers: 22​=1=πt
Simplify 2⋅2π​+2⋅2πn:π+4πn
2⋅2π​+2⋅2πn
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=π+4πn
πt>π+4πn
πt>π+4πn
πt>π+4πn
Divide both sides by π
πt>π+4πn
Divide both sides by πππt​>ππ​+π4πn​
Simplify
ππt​>ππ​+π4πn​
Simplify ππt​:t
ππt​
Cancel the common factor: π=t
Simplify ππ​+π4πn​:1+4n
ππ​+π4πn​
Apply rule aa​=1ππ​=1=1+π4πn​
Cancel π4πn​:4n
π4πn​
Cancel the common factor: π=4n
=1+4n
t>1+4n
t>1+4n
t>1+4n
2πt​<2π−arccos(0)+2πn:t<3+4n
2πt​<2π−arccos(0)+2πn
Simplify 2π−arccos(0)+2πn:2π−2π​+2πn
2π−arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−2π​+2πn
2πt​<2π−2π​+2πn
Multiply both sides by 2
2πt​<2π−2π​+2πn
Multiply both sides by 222πt​<2⋅2π−2⋅2π​+2⋅2πn
Simplify
22πt​<2⋅2π−2⋅2π​+2⋅2πn
Simplify 22πt​:πt
22πt​
Divide the numbers: 22​=1=πt
Simplify 2⋅2π−2⋅2π​+2⋅2πn:3π+4πn
2⋅2π−2⋅2π​+2⋅2πn
2⋅2π=4π
2⋅2π
Multiply the numbers: 2⋅2=4=4π
2⋅2π​=π
2⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π2​
Cancel the common factor: 2=π
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=4π−π+4πn
Add similar elements: 4π−π=3π=3π+4πn
πt<3π+4πn
πt<3π+4πn
πt<3π+4πn
Divide both sides by π
πt<3π+4πn
Divide both sides by πππt​<π3π​+π4πn​
Simplify
ππt​<π3π​+π4πn​
Simplify ππt​:t
ππt​
Cancel the common factor: π=t
Simplify π3π​+π4πn​:3+4n
π3π​+π4πn​
Cancel π3π​:3
π3π​
Cancel the common factor: π=3
=3+π4πn​
Cancel π4πn​:4n
π4πn​
Cancel the common factor: π=4n
=3+4n
t<3+4n
t<3+4n
t<3+4n
Combine the intervalst>1+4nandt<3+4n
Merge Overlapping Intervals1+4n<t<3+4n

Popular Examples

(10pi)/9 <= arctan(θ)cos(x)-1>=-2tan(90-θ)>1sin(2x)>= 1tan(x+pi/3)>1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024