Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(x)+cos(x)-1>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(x)+cos(x)−1≥0

Solution

−32π​+2πn≤x≤32π​+2πn
+2
Interval Notation
[−32π​+2πn,32π​+2πn]
Decimal
−2.09439…+2πn≤x≤2.09439…+2πn
Solution steps
2sin2(x)+cos(x)−1≥0
Use the following identity: cos2(x)+sin2(x)=1Therefore sin2(x)=1−cos2(x)2(1−cos2(x))+cos(x)−1≥0
Simplify 2(1−cos2(x))+cos(x)−1:cos(x)−2cos2(x)+1
2(1−cos2(x))+cos(x)−1
Expand 2(1−cos2(x)):2−2cos2(x)
2(1−cos2(x))
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=cos2(x)=2⋅1−2cos2(x)
Multiply the numbers: 2⋅1=2=2−2cos2(x)
=2−2cos2(x)+cos(x)−1
Simplify 2−2cos2(x)+cos(x)−1:cos(x)−2cos2(x)+1
2−2cos2(x)+cos(x)−1
Group like terms=−2cos2(x)+cos(x)+2−1
Add/Subtract the numbers: 2−1=1=cos(x)−2cos2(x)+1
=cos(x)−2cos2(x)+1
cos(x)−2cos2(x)+1≥0
Let: u=cos(x)u−2u2+1≥0
u−2u2+1≥0:−21​≤u≤1
u−2u2+1≥0
Factor u−2u2+1:−(2u+1)(u−1)
u−2u2+1
Factor out common term −1=−(2u2−u−1)
Factor 2u2−u−1:(2u+1)(u−1)
2u2−u−1
Write in the standard form ax2+bx+c=2u2−u−1
Break the expression into groups
2u2−u−1
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=−2,check if u+v=−1
Check u=1,v=−2:u∗v=−2,u+v=−1⇒TrueCheck u=2,v=−1:u∗v=−2,u+v=1⇒False
u=1,v=−2
Group into (ax2+ux)+(vx+c)(2u2+u)+(−2u−1)
=(2u2+u)+(−2u−1)
Factor out ufrom 2u2+u:u(2u+1)
2u2+u
Apply exponent rule: ab+c=abacu2=uu=2uu+u
Factor out common term u=u(2u+1)
Factor out −1from −2u−1:−(2u+1)
−2u−1
Factor out common term −1=−(2u+1)
=u(2u+1)−(2u+1)
Factor out common term 2u+1=(2u+1)(u−1)
=−(2u+1)(u−1)
−(2u+1)(u−1)≥0
Multiply both sides by −1 (reverse the inequality)(−(2u+1)(u−1))(−1)≤0⋅(−1)
Simplify(2u+1)(u−1)≤0
Identify the intervals
Find the signs of the factors of (2u+1)(u−1)
Find the signs of 2u+1
2u+1=0:u=−21​
2u+1=0
Move 1to the right side
2u+1=0
Subtract 1 from both sides2u+1−1=0−1
Simplify2u=−1
2u=−1
Divide both sides by 2
2u=−1
Divide both sides by 222u​=2−1​
Simplifyu=−21​
u=−21​
2u+1<0:u<−21​
2u+1<0
Move 1to the right side
2u+1<0
Subtract 1 from both sides2u+1−1<0−1
Simplify2u<−1
2u<−1
Divide both sides by 2
2u<−1
Divide both sides by 222u​<2−1​
Simplifyu<−21​
u<−21​
2u+1>0:u>−21​
2u+1>0
Move 1to the right side
2u+1>0
Subtract 1 from both sides2u+1−1>0−1
Simplify2u>−1
2u>−1
Divide both sides by 2
2u>−1
Divide both sides by 222u​>2−1​
Simplifyu>−21​
u>−21​
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Summarize in a table:2u+1u−1(2u+1)(u−1)​u<−21​−−+​u=−21​0−0​−21​<u<1+−−​u=1+00​u>1+++​​
Identify the intervals that satisfy the required condition: ≤0u=−21​or−21​<u<1oru=1
Merge Overlapping Intervals
−21​≤u<1oru=1
The union of two intervals is the set of numbers which are in either interval
u=−21​or−21​<u<1
−21​≤u<1
The union of two intervals is the set of numbers which are in either interval
−21​≤u<1oru=1
−21​≤u≤1
−21​≤u≤1
−21​≤u≤1
−21​≤u≤1
Substitute back u=cos(x)−21​≤cos(x)≤1
If a≤u≤bthen a≤uandu≤b−21​≤cos(x)andcos(x)≤1
−21​≤cos(x):−32π​+2πn≤x≤32π​+2πn
−21​≤cos(x)
Switch sidescos(x)≥−21​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(−21​)+2πn≤x≤arccos(−21​)+2πn
Simplify −arccos(−21​):−32π​
−arccos(−21​)
Use the following trivial identity:arccos(−21​)=32π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−32π​
Simplify arccos(−21​):32π​
arccos(−21​)
Use the following trivial identity:arccos(−21​)=32π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=32π​
−32π​+2πn≤x≤32π​+2πn
cos(x)≤1:True for all x∈R
cos(x)≤1
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)≤1and−1≤cos(x)≤1:−1≤cos(x)≤1
Let y=cos(x)
Combine the intervalsy≤1and−1≤y≤1
Merge Overlapping Intervals
y≤1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≤1and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervals−32π​+2πn≤x≤32π​+2πnandTrueforallx∈R
Merge Overlapping Intervals−32π​+2πn≤x≤32π​+2πn

Popular Examples

(2sin(x)-1)/(3cos(x))<= 0sin(2x)-1/2 <0cos^2(x)> 1/4 ,0<= x<= 2pisin((x*pi}{(\frac{1+sqrt(5))/2)^2})>02sin(x)-sqrt(3)<= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024