Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

6sin^2(x)-5sin(x)+1<= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

6sin2(x)−5sin(x)+1≤0

Solution

arcsin(31​)+2πn≤x≤6π​+2πnor65π​+2πn≤x≤π−arcsin(31​)+2πn
+2
Interval Notation
[arcsin(31​)+2πn,6π​+2πn]∪[65π​+2πn,π−arcsin(31​)+2πn]
Decimal
0.33983…+2πn≤x≤0.52359…+2πnor2.61799…+2πn≤x≤2.80175…+2πn
Solution steps
6sin2(x)−5sin(x)+1≤0
Let: u=sin(x)6u2−5u+1≤0
6u2−5u+1≤0:31​≤u≤21​
6u2−5u+1≤0
Factor 6u2−5u+1:(3u−1)(2u−1)
6u2−5u+1
Break the expression into groups
6u2−5u+1
Definition
Factors of 6:1,2,3,6
6
Divisors (Factors)
Find the Prime factors of 6:2,3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Add the prime factors: 2,3
Add 1 and the number 6 itself1,6
The factors of 61,2,3,6
Negative factors of 6:−1,−2,−3,−6
Multiply the factors by −1 to get the negative factors−1,−2,−3,−6
For every two factors such that u∗v=6,check if u+v=−5
Check u=1,v=6:u∗v=6,u+v=7⇒FalseCheck u=2,v=3:u∗v=6,u+v=5⇒False
u=−2,v=−3
Group into (ax2+ux)+(vx+c)(6u2−2u)+(−3u+1)
=(6u2−2u)+(−3u+1)
Factor out 2ufrom 6u2−2u:2u(3u−1)
6u2−2u
Apply exponent rule: ab+c=abacu2=uu=6uu−2u
Rewrite 6 as 2⋅3=2⋅3uu−2u
Factor out common term 2u=2u(3u−1)
Factor out −1from −3u+1:−(3u−1)
−3u+1
Factor out common term −1=−(3u−1)
=2u(3u−1)−(3u−1)
Factor out common term 3u−1=(3u−1)(2u−1)
(3u−1)(2u−1)≤0
Identify the intervals
Find the signs of the factors of (3u−1)(2u−1)
Find the signs of 3u−1
3u−1=0:u=31​
3u−1=0
Move 1to the right side
3u−1=0
Add 1 to both sides3u−1+1=0+1
Simplify3u=1
3u=1
Divide both sides by 3
3u=1
Divide both sides by 333u​=31​
Simplifyu=31​
u=31​
3u−1<0:u<31​
3u−1<0
Move 1to the right side
3u−1<0
Add 1 to both sides3u−1+1<0+1
Simplify3u<1
3u<1
Divide both sides by 3
3u<1
Divide both sides by 333u​<31​
Simplifyu<31​
u<31​
3u−1>0:u>31​
3u−1>0
Move 1to the right side
3u−1>0
Add 1 to both sides3u−1+1>0+1
Simplify3u>1
3u>1
Divide both sides by 3
3u>1
Divide both sides by 333u​>31​
Simplifyu>31​
u>31​
Find the signs of 2u−1
2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
2u−1<0:u<21​
2u−1<0
Move 1to the right side
2u−1<0
Add 1 to both sides2u−1+1<0+1
Simplify2u<1
2u<1
Divide both sides by 2
2u<1
Divide both sides by 222u​<21​
Simplifyu<21​
u<21​
2u−1>0:u>21​
2u−1>0
Move 1to the right side
2u−1>0
Add 1 to both sides2u−1+1>0+1
Simplify2u>1
2u>1
Divide both sides by 2
2u>1
Divide both sides by 222u​>21​
Simplifyu>21​
u>21​
Summarize in a table:3u−12u−1(3u−1)(2u−1)​u<31​−−+​u=31​0−0​31​<u<21​+−−​u=21​+00​u>21​+++​​
Identify the intervals that satisfy the required condition: ≤0u=31​or31​<u<21​oru=21​
Merge Overlapping Intervals
31​≤u<21​oru=21​
The union of two intervals is the set of numbers which are in either interval
u=31​or31​<u<21​
31​≤u<21​
The union of two intervals is the set of numbers which are in either interval
31​≤u<21​oru=21​
31​≤u≤21​
31​≤u≤21​
31​≤u≤21​
31​≤u≤21​
Substitute back u=sin(x)31​≤sin(x)≤21​
If a≤u≤bthen a≤uandu≤b31​≤sin(x)andsin(x)≤21​
31​≤sin(x):arcsin(31​)+2πn≤x≤π−arcsin(31​)+2πn
31​≤sin(x)
Switch sidessin(x)≥31​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(31​)+2πn≤x≤π−arcsin(31​)+2πn
sin(x)≤21​:−67π​+2πn≤x≤6π​+2πn
sin(x)≤21​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(21​)+2πn≤x≤arcsin(21​)+2πn
Simplify −π−arcsin(21​):−67π​
−π−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−6π​
Simplify
−π−6π​
Convert element to fraction: π=6π6​=−6π6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π6−π​
Add similar elements: −6π−π=−7π=6−7π​
Apply the fraction rule: b−a​=−ba​=−67π​
=−67π​
Simplify arcsin(21​):6π​
arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​
−67π​+2πn≤x≤6π​+2πn
Combine the intervalsarcsin(31​)+2πn≤x≤π−arcsin(31​)+2πnand−67π​+2πn≤x≤6π​+2πn
Merge Overlapping Intervalsarcsin(31​)+2πn≤x≤6π​+2πnor65π​+2πn≤x≤π−arcsin(31​)+2πn

Popular Examples

2sin(2x)+(1/2)>= 02cos(2x)-1>= 0-cos(x)>=-sin(2x)tan(x)>7cos(x)<-1/2 ,0<= x<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024