Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(3x-1)>-sqrt(3)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(3x−1)>−3​

Solution

93−π​+3π​n<x<62+π​+3π​n
+2
Interval Notation
(93−π​+3π​n,62+π​+3π​n)
Decimal
−0.01573…+3π​n<x<0.85693…+3π​n
Solution steps
tan(3x−1)>−3​
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(−3​)+πn<(3x−1)<2π​+πn
If a<u<bthen a<uandu<barctan(−3​)+πn<3x−1and3x−1<2π​+πn
arctan(−3​)+πn<3x−1:x>93−π​+3π​n
arctan(−3​)+πn<3x−1
Switch sides3x−1>arctan(−3​)+πn
Simplify arctan(−3​)+πn:−3π​+πn
arctan(−3​)+πn
arctan(−3​)=−3π​
arctan(−3​)
Use the following property: arctan(−x)=−arctan(x)arctan(−3​)=−arctan(3​)=−arctan(3​)
Use the following trivial identity:arctan(3​)=3π​
arctan(3​)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=3π​
=−3π​
=−3π​+πn
3x−1>−3π​+πn
Move 1to the right side
3x−1>−3π​+πn
Add 1 to both sides3x−1+1>−3π​+πn+1
Simplify3x>−3π​+πn+1
3x>−3π​+πn+1
Divide both sides by 3
3x>−3π​+πn+1
Divide both sides by 333x​>−33π​​+3πn​+31​
Simplify
33x​>−33π​​+3πn​+31​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −33π​​+3πn​+31​:31​−9π​+3πn​
−33π​​+3πn​+31​
Group like terms=31​+3πn​−33π​​
33π​​=9π​
33π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅3π​
Multiply the numbers: 3⋅3=9=9π​
=31​+3πn​−9π​
Group like terms=31​−9π​+3πn​
x>31​−9π​+3πn​
x>31​−9π​+3πn​
Simplify 31​−9π​:93−π​
31​−9π​
Least Common Multiplier of 3,9:9
3,9
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 9:3⋅3
9
9divides by 39=3⋅3=3⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 9=3⋅3
Multiply the numbers: 3⋅3=9=9
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 9
For 31​:multiply the denominator and numerator by 331​=3⋅31⋅3​=93​
=93​−9π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=93−π​
x>93−π​+3π​n
x>93−π​+3π​n
3x−1<2π​+πn:x<62+π​+3π​n
3x−1<2π​+πn
Move 1to the right side
3x−1<2π​+πn
Add 1 to both sides3x−1+1<2π​+πn+1
Simplify3x<2π​+πn+1
3x<2π​+πn+1
Divide both sides by 3
3x<2π​+πn+1
Divide both sides by 333x​<32π​​+3πn​+31​
Simplify
33x​<32π​​+3πn​+31​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​​+3πn​+31​:31​+6π​+3πn​
32π​​+3πn​+31​
Group like terms=31​+3πn​+32π​​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=31​+3πn​+6π​
Group like terms=31​+6π​+3πn​
x<31​+6π​+3πn​
x<31​+6π​+3πn​
Simplify 31​+6π​:62+π​
31​+6π​
Least Common Multiplier of 3,6:6
3,6
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 6=3⋅2
Multiply the numbers: 3⋅2=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 31​:multiply the denominator and numerator by 231​=3⋅21⋅2​=62​
=62​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62+π​
x<62+π​+3π​n
x<62+π​+3π​n
Combine the intervalsx>93−π​+3π​nandx<62+π​+3π​n
Merge Overlapping Intervals93−π​+3π​n<x<62+π​+3π​n

Popular Examples

sin(x)>= 0,(1-2sin(x))/(1+sin(x))>04cos(x/2)+1>2sqrt(2)+1,0<= x<= 6pi3cos(t/2-pi/4)<0sin(x)+cos^2(x)<= 1sin(3x-pi/6)+cos(3x-pi/6)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024