Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(3x-pi/6)+cos(3x-pi/6)>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3x−6π​)+cos(3x−6π​)>0

Solution

−36π​+32π​n<x<3611π​+32π​n
+2
Interval Notation
(−36π​+32π​n,3611π​+32π​n)
Decimal
−0.08726…+32π​n<x<0.95993…+32π​n
Solution steps
sin(3x−6π​)+cos(3x−6π​)>0
Use the following identity: cos(x)+sin(x)=2​sin(4π​+x)2​sin(4π​−6π​+3x)>0
Divide both sides by 2​
2​sin(4π​−6π​+3x)>0
Divide both sides by 2​2​2​sin(4π​−6π​+3x)​>2​0​
Simplifysin(4π​−6π​+3x)>0
sin(4π​−6π​+3x)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<(4π​−6π​+3x)<π−arcsin(0)+2πn
If a<u<bthen a<uandu<barcsin(0)+2πn<4π​−6π​+3xand4π​−6π​+3x<π−arcsin(0)+2πn
arcsin(0)+2πn<4π​−6π​+3x:x>32πn​−36π​
arcsin(0)+2πn<4π​−6π​+3x
Switch sides4π​−6π​+3x>arcsin(0)+2πn
Simplify arcsin(0)+2πn:2πn
arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0+2πn
0+2πn=2πn=2πn
4π​−6π​+3x>2πn
Move 4π​to the right side
4π​−6π​+3x>2πn
Subtract 4π​ from both sides4π​−6π​+3x−4π​>2πn−4π​
Simplify−6π​+3x>2πn−4π​
−6π​+3x>2πn−4π​
Move 6π​to the right side
−6π​+3x>2πn−4π​
Add 6π​ to both sides−6π​+3x+6π​>2πn−4π​+6π​
Simplify
−6π​+3x+6π​>2πn−4π​+6π​
Simplify −6π​+3x+6π​:3x
−6π​+3x+6π​
Add similar elements: −6π​+6π​>0
=3x
Simplify 2πn−4π​+6π​:2πn−12π​
2πn−4π​+6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=−12π3​+12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+π2​
Add similar elements: −3π+2π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=2πn−12π​
3x>2πn−12π​
3x>2πn−12π​
3x>2πn−12π​
Divide both sides by 3
3x>2πn−12π​
Divide both sides by 333x​>32πn​−312π​​
Simplify
33x​>32πn​−312π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32πn​−312π​​:32πn​−36π​
32πn​−312π​​
312π​​=36π​
312π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅3π​
Multiply the numbers: 12⋅3=36=36π​
=32πn​−36π​
x>32πn​−36π​
x>32πn​−36π​
x>32πn​−36π​
4π​−6π​+3x<π−arcsin(0)+2πn:x<3611π​+32π​n
4π​−6π​+3x<π−arcsin(0)+2πn
Simplify π−arcsin(0)+2πn:π+2πn
π−arcsin(0)+2πn
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0+2πn
π−0+2πn=π+2πn=π+2πn
4π​−6π​+3x<π+2πn
Move 4π​to the right side
4π​−6π​+3x<π+2πn
Subtract 4π​ from both sides4π​−6π​+3x−4π​<π+2πn−4π​
Simplify−6π​+3x<π+2πn−4π​
−6π​+3x<π+2πn−4π​
Move 6π​to the right side
−6π​+3x<π+2πn−4π​
Add 6π​ to both sides−6π​+3x+6π​<π+2πn−4π​+6π​
Simplify
−6π​+3x+6π​<π+2πn−4π​+6π​
Simplify −6π​+3x+6π​:3x
−6π​+3x+6π​
Add similar elements: −6π​+6π​<0
=3x
Simplify π+2πn−4π​+6π​:π+2πn−12π​
π+2πn−4π​+6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=−12π3​+12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3+π2​
Add similar elements: −3π+2π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=π+2πn−12π​
3x<π+2πn−12π​
3x<π+2πn−12π​
3x<π+2πn−12π​
Divide both sides by 3
3x<π+2πn−12π​
Divide both sides by 333x​<3π​+32πn​−312π​​
Simplify
33x​<3π​+32πn​−312π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 3π​+32πn​−312π​​:3π​−36π​+32πn​
3π​+32πn​−312π​​
312π​​=36π​
312π​​
Apply the fraction rule: acb​​=c⋅ab​=12⋅3π​
Multiply the numbers: 12⋅3=36=36π​
=3π​+32πn​−36π​
Group like terms=3π​−36π​+32πn​
x<3π​−36π​+32πn​
x<3π​−36π​+32πn​
Simplify 3π​−36π​:3611π​
3π​−36π​
Least Common Multiplier of 3,36:36
3,36
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 36=3⋅3⋅2⋅2
Multiply the numbers: 3⋅3⋅2⋅2=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 3π​:multiply the denominator and numerator by 123π​=3⋅12π12​=36π12​
=36π12​−36π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36π12−π​
Add similar elements: 12π−π=11π=3611π​
x<3611π​+32π​n
x<3611π​+32π​n
Combine the intervalsx>32πn​−36π​andx<3611π​+32π​n
Merge Overlapping Intervals−36π​+32π​n<x<3611π​+32π​n

Popular Examples

sin^2(x)<= 1cot(x)+(sin(x))/(cos(x)-2)>= 0(2sin(2x)+sqrt(2))*tan(x)<0cos(x)<=-(sqrt(2))/2 ,-pi<= x<= pi6sin(2x-(2pi)/3)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024