Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2tan(2x)<= 3tan(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2tan(2x)≤3tan(x)

Solution

4π​+πn<x<2π​+πnor43π​+πn<x≤π+πn
+2
Interval Notation
(4π​+πn,2π​+πn)∪(43π​+πn,π+πn]
Decimal
0.78539…+πn<x<1.57079…+πnor2.35619…+πn<x≤3.14159…+πn
Solution steps
2tan(2x)≤3tan(x)
Move 3tan(x)to the left side
2tan(2x)≤3tan(x)
Subtract 3tan(x) from both sides2tan(2x)−3tan(x)≤3tan(x)−3tan(x)
2tan(2x)−3tan(x)≤0
2tan(2x)−3tan(x)≤0
Periodicity of 2tan(2x)−3tan(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2tan(2x),3tan(x)
Periodicity of 2tan(2x):2π​
Periodicity of a⋅tan(bx+c)+d=∣b∣periodicityoftan(x)​Periodicity of tan(x)is π=∣2∣π​
Simplify=2π​
Periodicity of 3tan(x):π
Periodicity of a⋅tan(bx+c)+d=∣b∣periodicityoftan(x)​Periodicity of tan(x)is π=∣1∣π​
Simplify=π
Combine periods: 2π​,π
=π
Express with sin, cos
2tan(2x)−3tan(x)≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​2⋅cos(2x)sin(2x)​−3tan(x)≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​2⋅cos(2x)sin(2x)​−3⋅cos(x)sin(x)​≤0
2⋅cos(2x)sin(2x)​−3⋅cos(x)sin(x)​≤0
Simplify 2⋅cos(2x)sin(2x)​−3⋅cos(x)sin(x)​:cos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​
2⋅cos(2x)sin(2x)​−3⋅cos(x)sin(x)​
Multiply 2⋅cos(2x)sin(2x)​:cos(2x)2sin(2x)​
2⋅cos(2x)sin(2x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2x)sin(2x)⋅2​
=cos(2x)2sin(2x)​−3⋅cos(x)sin(x)​
Multiply 3⋅cos(x)sin(x)​:cos(x)3sin(x)​
3⋅cos(x)sin(x)​
Multiply fractions: a⋅cb​=ca⋅b​=cos(x)sin(x)⋅3​
=cos(2x)2sin(2x)​−cos(x)3sin(x)​
Least Common Multiplier of cos(2x),cos(x):cos(2x)cos(x)
cos(2x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(2x) or cos(x)=cos(2x)cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos(2x)cos(x)
For cos(2x)sin(2x)⋅2​:multiply the denominator and numerator by cos(x)cos(2x)sin(2x)⋅2​=cos(2x)cos(x)sin(2x)⋅2cos(x)​
For cos(x)sin(x)⋅3​:multiply the denominator and numerator by cos(2x)cos(x)sin(x)⋅3​=cos(x)cos(2x)sin(x)⋅3cos(2x)​
=cos(2x)cos(x)sin(2x)⋅2cos(x)​−cos(x)cos(2x)sin(x)⋅3cos(2x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2x)cos(x)sin(2x)⋅2cos(x)−sin(x)⋅3cos(2x)​
cos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​≤0
Find the zeroes and undifined points of cos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​for 0≤x<π
To find the zeroes, set the inequality to zerocos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​=0
cos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​=0,0≤x<π:x=0
cos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=02sin(2x)cos(x)−3sin(x)cos(2x)=0
Rewrite using trig identities
2cos(x)sin(2x)−3cos(2x)sin(x)
Use the Double Angle identity: sin(2x)=2sin(x)cos(x)=2cos(x)⋅2sin(x)cos(x)−3cos(2x)sin(x)
2cos(x)⋅2sin(x)cos(x)=4cos2(x)sin(x)
2cos(x)⋅2sin(x)cos(x)
Multiply the numbers: 2⋅2=4=4cos(x)sin(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=4sin(x)cos1+1(x)
Add the numbers: 1+1=2=4sin(x)cos2(x)
=4cos2(x)sin(x)−3cos(2x)sin(x)
−3cos(2x)sin(x)+4cos2(x)sin(x)=0
Factor −3cos(2x)sin(x)+4cos2(x)sin(x):sin(x)(−3cos(2x)+4cos2(x))
−3cos(2x)sin(x)+4cos2(x)sin(x)
Factor out common term sin(x)=sin(x)(−3cos(2x)+4cos2(x))
sin(x)(−3cos(2x)+4cos2(x))=0
Solving each part separatelysin(x)=0or−3cos(2x)+4cos2(x)=0
sin(x)=0,0≤x<π:x=0
sin(x)=0,0≤x<π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<πx=0
−3cos(2x)+4cos2(x)=0,0≤x<π:No Solution
−3cos(2x)+4cos2(x)=0,0≤x<π
Rewrite using trig identities
−3cos(2x)+4cos2(x)
Use the Double Angle identity: cos(2x)=2cos2(x)−1=−3(2cos2(x)−1)+4cos2(x)
Simplify −3(2cos2(x)−1)+4cos2(x):−2cos2(x)+3
−3(2cos2(x)−1)+4cos2(x)
Expand −3(2cos2(x)−1):−6cos2(x)+3
−3(2cos2(x)−1)
Apply the distributive law: a(b−c)=ab−aca=−3,b=2cos2(x),c=1=−3⋅2cos2(x)−(−3)⋅1
Apply minus-plus rules−(−a)=a=−3⋅2cos2(x)+3⋅1
Simplify −3⋅2cos2(x)+3⋅1:−6cos2(x)+3
−3⋅2cos2(x)+3⋅1
Multiply the numbers: 3⋅2=6=−6cos2(x)+3⋅1
Multiply the numbers: 3⋅1=3=−6cos2(x)+3
=−6cos2(x)+3
=−6cos2(x)+3+4cos2(x)
Simplify −6cos2(x)+3+4cos2(x):−2cos2(x)+3
−6cos2(x)+3+4cos2(x)
Group like terms=−6cos2(x)+4cos2(x)+3
Add similar elements: −6cos2(x)+4cos2(x)=−2cos2(x)=−2cos2(x)+3
=−2cos2(x)+3
=−2cos2(x)+3
3−2cos2(x)=0
Solve by substitution
3−2cos2(x)=0
Let: cos(x)=u3−2u2=0
3−2u2=0:u=23​​,u=−23​​
3−2u2=0
Move 3to the right side
3−2u2=0
Subtract 3 from both sides3−2u2−3=0−3
Simplify−2u2=−3
−2u2=−3
Divide both sides by −2
−2u2=−3
Divide both sides by −2−2−2u2​=−2−3​
Simplifyu2=23​
u2=23​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=23​​,u=−23​​
Substitute back u=cos(x)cos(x)=23​​,cos(x)=−23​​
cos(x)=23​​,cos(x)=−23​​
cos(x)=23​​,0≤x<π:No Solution
cos(x)=23​​,0≤x<π
−1≤cos(x)≤1NoSolution
cos(x)=−23​​,0≤x<π:No Solution
cos(x)=−23​​,0≤x<π
−1≤cos(x)≤1NoSolution
Combine all the solutionsNoSolution
Combine all the solutionsx=0
Find the undefined points:x=4π​,x=43π​,x=2π​
Find the zeros of the denominatorcos(2x)cos(x)=0
Solving each part separatelycos(2x)=0orcos(x)=0
cos(2x)=0,0≤x<π:x=4π​,x=43π​
cos(2x)=0,0≤x<π
General solutions for cos(2x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
2x=2π​+2πn,2x=23π​+2πn
2x=2π​+2πn,2x=23π​+2πn
Solve 2x=2π​+2πn:x=4π​+πn
2x=2π​+2πn
Divide both sides by 2
2x=2π​+2πn
Divide both sides by 222x​=22π​​+22πn​
Simplify
22x​=22π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​:4π​+πn
22π​​+22πn​
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=4π​+πn
x=4π​+πn
x=4π​+πn
x=4π​+πn
Solve 2x=23π​+2πn:x=43π​+πn
2x=23π​+2πn
Divide both sides by 2
2x=23π​+2πn
Divide both sides by 222x​=223π​​+22πn​
Simplify
22x​=223π​​+22πn​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 223π​​+22πn​:43π​+πn
223π​​+22πn​
223π​​=43π​
223π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅23π​
Multiply the numbers: 2⋅2=4=43π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=43π​+πn
x=43π​+πn
x=43π​+πn
x=43π​+πn
x=4π​+πn,x=43π​+πn
Solutions for the range 0≤x<πx=4π​,x=43π​
cos(x)=0,0≤x<π:x=2π​
cos(x)=0,0≤x<π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
Combine all the solutionsx=4π​,x=43π​,x=2π​
0,4π​,2π​,43π​
Identify the intervals0<x<4π​,4π​<x<2π​,2π​<x<43π​,43π​<x<π
Summarize in a table:2sin(2x)cos(x)−3sin(x)cos(2x)cos(2x)cos(x)cos(2x)cos(x)2sin(2x)cos(x)−3sin(x)cos(2x)​​x=00++0​0<x<4π​++++​x=4π​+0+Undefined​4π​<x<2π​+−+−​x=2π​+−0Undefined​2π​<x<43π​+−−+​x=43π​+0−Undefined​43π​<x<π++−−​x=π0+−0​​
Identify the intervals that satisfy the required condition: ≤0x=0or4π​<x<2π​or43π​<x<πorx=π
Merge Overlapping Intervals
x=0or4π​<x<2π​or43π​<x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0or4π​<x<2π​
x=0or4π​<x<2π​
The union of two intervals is the set of numbers which are in either interval
x=0or4π​<x<2π​or43π​<x<π
x=0or4π​<x<2π​or43π​<x<π
The union of two intervals is the set of numbers which are in either interval
x=0or4π​<x<2π​or43π​<x<πorx=π
x=0or4π​<x<2π​or43π​<x≤π
x=0or4π​<x<2π​or43π​<x≤π
Apply the periodicity of 2tan(2x)−3tan(x)4π​+πn<x<2π​+πnor43π​+πn<x≤π+πn

Popular Examples

1/((sin(x))^2)< 4/3 ,0<x< pi/(15)cos^2(x)<sin^2(x)sin(x-45)> 1/2 sqrt(3),0<= x<= 3602sin^2(x)>-1sin(θ)+cos(θ)+1>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024