解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

1/((sin(x))^2)< 4/3 ,0<x< pi/(15)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

(sin(x))21​<34​,0<x<15π​

解

3π​+2πn<x<32π​+2πnor−32π​+2πn<x<−3π​+2πn
+2
区間表記
(3π​+2πn,32π​+2πn)∪(−32π​+2πn,−3π​+2πn)
十進法表記
1.04719…+2πn<x<2.09439…+2πnor−2.09439…+2πn<x<−1.04719…+2πn
解答ステップ
(sin(x))21​<34​,0<x<15π​
標準的な形式で書き換える
sin2(x)1​<34​
両辺から34​を引くsin2(x)1​−34​<34​−34​
簡素化sin2(x)1​−34​<0
簡素化 sin2(x)1​−34​:3sin2(x)3−4sin2(x)​
sin2(x)1​−34​
以下の最小公倍数: sin2(x),3:3sin2(x)
sin2(x),3
最小公倍数 (LCM)
sin2(x) または以下のいずれかに現れる因数で構成された式を計算する: 3=3sin2(x)
LCMに基づいて分数を調整する
該当する分母を乗じてLCMに変えるために
必要な量で各分子を乗じる 3sin2(x)
sin2(x)1​の場合:分母と分子に以下を乗じる: 3sin2(x)1​=sin2(x)⋅31⋅3​=3sin2(x)3​
34​の場合:分母と分子に以下を乗じる: sin2(x)34​=3sin2(x)4sin2(x)​
=3sin2(x)3​−3sin2(x)4sin2(x)​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=3sin2(x)3−4sin2(x)​
3sin2(x)3−4sin2(x)​<0
以下で両辺を乗じる:33sin2(x)3(3−4sin2(x))​<0⋅3
簡素化sin2(x)3−4sin2(x)​<0
sin2(x)3−4sin2(x)​<0
因数 sin2(x)3−4sin2(x)​:sin2(x)−(2sin(x)+3​)(2sin(x)−3​)​
sin2(x)3−4sin2(x)​
因数 −4sin2(x)+3:−(2sin(x)+3​)(2sin(x)−3​)
−4sin2(x)+3
共通項をくくり出す −1=−(4sin2(x)−3)
因数 4sin2(x)−3:(2sin(x)+3​)(2sin(x)−3​)
4sin2(x)−3
4sin2(x)−3を書き換え (2sin(x))2−(3​)2
4sin2(x)−3
4を書き換え 22=22sin2(x)−3
累乗根の規則を適用する: a=(a​)23=(3​)2=22sin2(x)−(3​)2
指数の規則を適用する: ambm=(ab)m22sin2(x)=(2sin(x))2=(2sin(x))2−(3​)2
=(2sin(x))2−(3​)2
2乗の差の公式を適用する:x2−y2=(x+y)(x−y)(2sin(x))2−(3​)2=(2sin(x)+3​)(2sin(x)−3​)=(2sin(x)+3​)(2sin(x)−3​)
=−(2sin(x)+3​)(2sin(x)−3​)
=sin2(x)−(2sin(x)+3​)(2sin(x)−3​)​
sin2(x)−(2sin(x)+3​)(2sin(x)−3​)​<0
両辺を −1 で乗じる (不等式を逆にする)sin2(x)(−(2sin(x)+3​)(2sin(x)−3​))(−1)​>0⋅(−1)
簡素化sin2(x)(2sin(x)+3​)(2sin(x)−3​)​>0
区間を特定する
以下の因数の符号を求める: sin2(x)(2sin(x)+3​)(2sin(x)−3​)​
以下の符号を求める: 2sin(x)+3​
2sin(x)+3​=0:sin(x)=−23​​
2sin(x)+3​=0
3​を右側に移動します
2sin(x)+3​=0
両辺から3​を引く2sin(x)+3​−3​=0−3​
簡素化2sin(x)=−3​
2sin(x)=−3​
以下で両辺を割る2
2sin(x)=−3​
以下で両辺を割る222sin(x)​=2−3​​
簡素化sin(x)=−23​​
sin(x)=−23​​
2sin(x)+3​<0:sin(x)<−23​​
2sin(x)+3​<0
3​を右側に移動します
2sin(x)+3​<0
両辺から3​を引く2sin(x)+3​−3​<0−3​
簡素化2sin(x)<−3​
2sin(x)<−3​
以下で両辺を割る2
2sin(x)<−3​
以下で両辺を割る222sin(x)​<2−3​​
簡素化sin(x)<−23​​
sin(x)<−23​​
2sin(x)+3​>0:sin(x)>−23​​
2sin(x)+3​>0
3​を右側に移動します
2sin(x)+3​>0
両辺から3​を引く2sin(x)+3​−3​>0−3​
簡素化2sin(x)>−3​
2sin(x)>−3​
以下で両辺を割る2
2sin(x)>−3​
以下で両辺を割る222sin(x)​>2−3​​
簡素化sin(x)>−23​​
sin(x)>−23​​
以下の符号を求める: 2sin(x)−3​
2sin(x)−3​=0:sin(x)=23​​
2sin(x)−3​=0
3​を右側に移動します
2sin(x)−3​=0
両辺に3​を足す2sin(x)−3​+3​=0+3​
簡素化2sin(x)=3​
2sin(x)=3​
以下で両辺を割る2
2sin(x)=3​
以下で両辺を割る222sin(x)​=23​​
簡素化sin(x)=23​​
sin(x)=23​​
2sin(x)−3​<0:sin(x)<23​​
2sin(x)−3​<0
3​を右側に移動します
2sin(x)−3​<0
両辺に3​を足す2sin(x)−3​+3​<0+3​
簡素化2sin(x)<3​
2sin(x)<3​
以下で両辺を割る2
2sin(x)<3​
以下で両辺を割る222sin(x)​<23​​
簡素化sin(x)<23​​
sin(x)<23​​
2sin(x)−3​>0:sin(x)>23​​
2sin(x)−3​>0
3​を右側に移動します
2sin(x)−3​>0
両辺に3​を足す2sin(x)−3​+3​>0+3​
簡素化2sin(x)>3​
2sin(x)>3​
以下で両辺を割る2
2sin(x)>3​
以下で両辺を割る222sin(x)​>23​​
簡素化sin(x)>23​​
sin(x)>23​​
以下の符号を求める: sin2(x)
sin2(x)=0:sin(x)=0
sin2(x)=0
規則を適用 xn=0⇒x=0
sin(x)=0
sin2(x)>0:sin(x)<0orsin(x)>0
sin2(x)>0
un>0 では nは偶数 の場合, u<0oru>0
sin(x)<0orsin(x)>0
特異点を求める
分母のゼロを求める sin2(x):解なし
sin2(x)=0
両側は等しくない解なし
表で要約する:2sin(x)+3​2sin(x)−3​sin2(x)sin2(x)(2sin(x)+3​)(2sin(x)−3​)​​sin(x)<−23​​−−++​sin(x)=−23​​0−+0​−23​​<sin(x)<0+−+−​sin(x)=0+−0未定義​0<sin(x)<23​​+−+−​sin(x)=23​​+0+0​sin(x)>23​​++++​​
必要条件を満たす区間を特定する:>0sin(x)<−23​​orsin(x)>23​​
sin(x)<−23​​orsin(x)>23​​
sin(x)<−23​​:−32π​+2πn<x<−3π​+2πn
sin(x)<−23​​
sin(x)<aでは, −1<a≤1の場合は−π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(−23​​)+2πn<x<arcsin(−23​​)+2πn
簡素化 −π−arcsin(−23​​):−32π​
−π−arcsin(−23​​)
arcsin(−23​​)=−3π​
arcsin(−23​​)
次のプロパティを使用する:arcsin(−x)=−arcsin(x)arcsin(−23​​)=−arcsin(23​​)=−arcsin(23​​)
次の自明恒等式を使用する:arcsin(23​​)=3π​
arcsin(23​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=3π​
=−3π​
=−π−(−3π​)
簡素化
−π−(−3π​)
規則を適用 −(−a)=a=−π+3π​
元を分数に変換する: π=3π3​=−3π3​+3π​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=3−π3+π​
類似した元を足す:−3π+π=−2π=3−2π​
分数の規則を適用する: b−a​=−ba​=−32π​
=−32π​
簡素化 arcsin(−23​​):−3π​
arcsin(−23​​)
次のプロパティを使用する:arcsin(−x)=−arcsin(x)arcsin(−23​​)=−arcsin(23​​)=−arcsin(23​​)
次の自明恒等式を使用する:arcsin(23​​)=3π​
arcsin(23​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=3π​
=−3π​
−32π​+2πn<x<−3π​+2πn
sin(x)>23​​:3π​+2πn<x<32π​+2πn
sin(x)>23​​
sin(x)>aでは, −1≤a<1の場合はarcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(23​​)+2πn<x<π−arcsin(23​​)+2πn
簡素化 arcsin(23​​):3π​
arcsin(23​​)
次の自明恒等式を使用する:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=3π​
簡素化 π−arcsin(23​​):32π​
π−arcsin(23​​)
次の自明恒等式を使用する:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−3π​
簡素化
π−3π​
元を分数に変換する: π=3π3​=3π3​−3π​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=3π3−π​
類似した元を足す:3π−π=2π=32π​
=32π​
3π​+2πn<x<32π​+2πn
区間を組み合わせる−32π​+2πn<x<−3π​+2πnor3π​+2πn<x<32π​+2πn
重複している区間をマージする3π​+2πn<x<32π​+2πnor−32π​+2πn<x<−3π​+2πn

人気の例

cos^2(x)<sin^2(x)cos2(x)<sin2(x)sin(x-45)> 1/2 sqrt(3),0<= x<= 360sin(x−45∘)>21​3​,0∘≤x≤360∘2sin^2(x)>-12sin2(x)>−1sin(θ)+cos(θ)+1>0sin(θ)+cos(θ)+1>0-cos(x)-4sin(2x)<0−cos(x)−4sin(2x)<0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024