Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-(sqrt(2))/2 <sin(x/2)<(sqrt(2))/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−22​​<sin(2x​)<22​​

Solution

4πn≤x<2π​+4πnor23π​+4πn<x<25π​+4πnor27π​+4πn<x<4π+4πn
+2
Interval Notation
[4πn,2π​+4πn)∪(23π​+4πn,25π​+4πn)∪(27π​+4πn,4π+4πn)
Decimal
4πn≤x<1.57079…+4πnor4.71238…+4πn<x<7.85398…+4πnor10.99557…+4πn<x<12.56637…+4πn
Solution steps
−22​​<sin(2x​)<22​​
If a<u<bthen a<uandu<b−22​​<sin(2x​)andsin(2x​)<22​​
−22​​<sin(2x​):−2π​+4πn<x<25π​+4πn
−22​​<sin(2x​)
Switch sidessin(2x​)>−22​​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(−22​​)+2πn<2x​<π−arcsin(−22​​)+2πn
If a<u<bthen a<uandu<barcsin(−22​​)+2πn<2x​and2x​<π−arcsin(−22​​)+2πn
arcsin(−22​​)+2πn<2x​:x>−2π​+4πn
arcsin(−22​​)+2πn<2x​
Switch sides2x​>arcsin(−22​​)+2πn
Simplify arcsin(−22​​)+2πn:−4π​+2πn
arcsin(−22​​)+2πn
arcsin(−22​​)=−4π​
arcsin(−22​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−22​​)=−arcsin(22​​)=−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​
arcsin(22​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=4π​
=−4π​
=−4π​+2πn
2x​>−4π​+2πn
Multiply both sides by 2
2x​>−4π​+2πn
Multiply both sides by 222x​>−2⋅4π​+2⋅2πn
Simplify
22x​>−2⋅4π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −2⋅4π​+2⋅2πn:−2π​+4πn
−2⋅4π​+2⋅2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=−2π​+4πn
x>−2π​+4πn
x>−2π​+4πn
x>−2π​+4πn
2x​<π−arcsin(−22​​)+2πn:x<25π​+4πn
2x​<π−arcsin(−22​​)+2πn
Simplify π−arcsin(−22​​)+2πn:π+4π​+2πn
π−arcsin(−22​​)+2πn
arcsin(−22​​)=−4π​
arcsin(−22​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−22​​)=−arcsin(22​​)=−arcsin(22​​)
Use the following trivial identity:arcsin(22​​)=4π​
arcsin(22​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=4π​
=−4π​
=π−(−4π​)+2πn
Apply rule −(−a)=a=π+4π​+2πn
2x​<π+4π​+2πn
Multiply both sides by 2
2x​<π+4π​+2πn
Multiply both sides by 222x​<2π+2⋅4π​+2⋅2πn
Simplify
22x​<2π+2⋅4π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π+2⋅4π​+2⋅2πn:2π+2π​+4πn
2π+2⋅4π​+2⋅2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=2π+2π​+4πn
x<2π+2π​+4πn
x<2π+2π​+4πn
Simplify 2π+2π​:25π​
2π+2π​
Convert element to fraction: 2π=22π2​=22π2​+2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=22π2+π​
2π2+π=5π
2π2+π
Multiply the numbers: 2⋅2=4=4π+π
Add similar elements: 4π+π=5π=5π
=25π​
x<25π​+4πn
x<25π​+4πn
Combine the intervalsx>−2π​+4πnandx<25π​+4πn
Merge Overlapping Intervals−2π​+4πn<x<25π​+4πn
sin(2x​)<22​​:−25π​+4πn<x<2π​+4πn
sin(2x​)<22​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(22​​)+2πn<2x​<arcsin(22​​)+2πn
If a<u<bthen a<uandu<b−π−arcsin(22​​)+2πn<2x​and2x​<arcsin(22​​)+2πn
−π−arcsin(22​​)+2πn<2x​:x>−25π​+4πn
−π−arcsin(22​​)+2πn<2x​
Switch sides2x​>−π−arcsin(22​​)+2πn
Simplify −π−arcsin(22​​)+2πn:−π−4π​+2πn
−π−arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−4π​+2πn
2x​>−π−4π​+2πn
Multiply both sides by 2
2x​>−π−4π​+2πn
Multiply both sides by 222x​>−2π−2⋅4π​+2⋅2πn
Simplify
22x​>−2π−2⋅4π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −2π−2⋅4π​+2⋅2πn:−2π−2π​+4πn
−2π−2⋅4π​+2⋅2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=−2π−2π​+4πn
x>−2π−2π​+4πn
x>−2π−2π​+4πn
Simplify −2π−2π​:−25π​
−2π−2π​
Convert element to fraction: 2π=22π2​=−22π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−2π2−π​
−2π2−π=−5π
−2π2−π
Multiply the numbers: 2⋅2=4=−4π−π
Add similar elements: −4π−π=−5π=−5π
=2−5π​
Apply the fraction rule: b−a​=−ba​=−25π​
x>−25π​+4πn
x>−25π​+4πn
2x​<arcsin(22​​)+2πn:x<2π​+4πn
2x​<arcsin(22​​)+2πn
Simplify arcsin(22​​)+2πn:4π​+2πn
arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​+2πn
2x​<4π​+2πn
Multiply both sides by 2
2x​<4π​+2πn
Multiply both sides by 222x​<2⋅4π​+2⋅2πn
Simplify
22x​<2⋅4π​+2⋅2πn
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2⋅4π​+2⋅2πn:2π​+4πn
2⋅4π​+2⋅2πn
2⋅4π​=2π​
2⋅4π​
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=2π​+4πn
x<2π​+4πn
x<2π​+4πn
x<2π​+4πn
Combine the intervalsx>−25π​+4πnandx<2π​+4πn
Merge Overlapping Intervals−25π​+4πn<x<2π​+4πn
Combine the intervals−2π​+4πn<x<25π​+4πnand−25π​+4πn<x<2π​+4πn
Merge Overlapping Intervals4πn≤x<2π​+4πnor23π​+4πn<x<25π​+4πnor27π​+4πn<x<4π+4πn

Popular Examples

-sqrt(3)<= tan(x)<= ((sqrt(3)))/30<cos(θ)<1tan(θ)=-12/5 \land sin(θ)>0-1<= arccos(x^2)<= 11-cos(θ)0<= θ<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024