Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

-1<= arccos(x^2)<= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

−1≤arccos(x2)≤1

Solution

−1≤x≤−cos(1)​orcos(1)​≤x≤1
+2
Interval Notation
[−1,−cos(1)​]∪[cos(1)​,1]
Decimal
−1≤x≤−0.73505…or0.73505…≤x≤1
Solution steps
−1≤arccos(x2)≤1
If a≤u≤bthen a≤uandu≤b−1≤arccos(x2)andarccos(x2)≤1
−1≤arccos(x2):−1≤x≤1
−1≤arccos(x2)
Switch sidesarccos(x2)≥−1
Range of arccos(x2):0≤arccos(x2)≤2π​
Function range definition
Range of x2:f(x)≥0
Function range definition
Vertex of x2:Minimum (0,0)
Parabola equation in polynomial form
The parabola parameters are:a=1,b=0,c=0
xv​=−2ab​xv​=−2⋅10​
Simplifyxv​=0
Plug in xv​=0to find the yv​value
yv​=02
Simplifyyv​=0
yv​=0
Therefore the parabola vertex is(0,0)
If a<0,then the vertex is a maximum value
If a>0,then the vertex is a minimum value
a=1
Minimum(0,0)
For a parabola ax2+bx+cwith Vertex (xv​,yv​)
If a<0the range is f(x)≤yv​
If a>0the range is f(x)≥yv​
a=1,Vertex (xv​,yv​)=(0,0)
f(x)≥0
Since arccos is a decreasing function with range of 0≤arccos(x)≤π and x2≥00≤arccos(x2)≤arccos(0)
Simplify0≤arccos(x2)≤2π​
arccos(x2)≥−1and0≤arccos(x2)≤2π​:0≤arccos(x2)≤2π​
Let y=arccos(x2)
Combine the intervalsy≥−1and0≤y≤2π​
Merge Overlapping Intervals
y≥−1and0≤y≤2π​
The intersection of two intervals is the set of numbers which are in both intervals
y≥−1and0≤y≤2π​
0≤y≤2π​
0≤y≤2π​
Trueforallxindomainofarccos(x2)
Domain of arccos(x2):−1≤x≤1
Domain definition
Find known functions domain restrictions:−1≤x≤1
arccos(f(x))⇒−1≤f(x)≤1
Solve −1≤x2≤1:−1≤x≤1
−1≤x2≤1
If a≤u≤bthen a≤uandu≤b−1≤x2andx2≤1
−1≤x2:True for all x∈R
−1≤x2
Switch sidesx2≥−1
If n is even, un≥0 for all uTrueforallx
x2≤1:−1≤x≤1
x2≤1
For un≤a, if nis even then
−1≤x≤1
Combine the intervalsTrueforallx∈Rand−1≤x≤1
Merge Overlapping Intervals
Trueforallx∈Rand−1≤x≤1
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈Rand−1≤x≤1
−1≤x≤1
−1≤x≤1
The function domain−1≤x≤1
−1≤x≤1
arccos(x2)≤1:−1≤x≤−cos(1)​orcos(1)​≤x≤1
arccos(x2)≤1
If arccos(x)≤athen x≥cos(a)x2≥cos(1)
x2≥cos(1):x≤−cos(1)​orx≥cos(1)​
x2≥cos(1)
For un≥a, if nis even then
x≤−cos(1)​orx≥cos(1)​
x≤−cos(1)​orx≥cos(1)​
Domain of arccos(x2):−1≤x≤1
Domain definition
Find known functions domain restrictions:−1≤x≤1
arccos(f(x))⇒−1≤f(x)≤1
Solve −1≤x2≤1:−1≤x≤1
−1≤x2≤1
If a≤u≤bthen a≤uandu≤b−1≤x2andx2≤1
−1≤x2:True for all x∈R
−1≤x2
Switch sidesx2≥−1
If n is even, un≥0 for all uTrueforallx
x2≤1:−1≤x≤1
x2≤1
For un≤a, if nis even then
−1≤x≤1
Combine the intervalsTrueforallx∈Rand−1≤x≤1
Merge Overlapping Intervals
Trueforallx∈Rand−1≤x≤1
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈Rand−1≤x≤1
−1≤x≤1
−1≤x≤1
The function domain−1≤x≤1
Combine the intervalsx≤−cos(1)​orx≥cos(1)​and−1≤x≤1
Merge Overlapping Intervals
x≤−cos(1)​orx≥cos(1)​and−1≤x≤1
The intersection of two intervals is the set of numbers which are in both intervals
x≤−cos(1)​orx≥cos(1)​and−1≤x≤1
−1≤x≤−cos(1)​orcos(1)​≤x≤1
−1≤x≤−cos(1)​orcos(1)​≤x≤1
Combine the intervals−1≤x≤1and(−1≤x≤−cos(1)​orcos(1)​≤x≤1)
Merge Overlapping Intervals
−1≤x≤1and−1≤x≤−cos(1)​orcos(1)​≤x≤1
The intersection of two intervals is the set of numbers which are in both intervals
−1≤x≤1and−1≤x≤−cos(1)​orcos(1)​≤x≤1
−1≤x≤−cos(1)​orcos(1)​≤x≤1
−1≤x≤−cos(1)​orcos(1)​≤x≤1

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1-cos(θ)0<= θ<= 2pi4(1-sin(θ))0<= θ<= pi-1<sin(x)<-1/2sin(θ)>0\land tan(θ)>0tan(x)<0<5sin(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024