解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

3cosh(2x)=5

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

3cosh(2x)=5

解

x=21​ln(3),x=−21​ln(3)
+1
度
x=31.47292…∘,x=−31.47292…∘
解答ステップ
3cosh(2x)=5
三角関数の公式を使用して書き換える
3cosh(2x)=5
双曲線の公式を使用する: cosh(x)=2ex+e−x​3⋅2e2x+e−2x​=5
3⋅2e2x+e−2x​=5
3⋅2e2x+e−2x​=5:x=21​ln(3),x=−21​ln(3)
3⋅2e2x+e−2x​=5
指数の規則を適用する
3⋅2e2x+e−2x​=5
指数の規則を適用する: abc=(ab)ce2x=(ex)2,e−2x=(ex)−23⋅2(ex)2+(ex)−2​=5
3⋅2(ex)2+(ex)−2​=5
equationを以下で書き換える: ex=u3⋅2(u)2+(u)−2​=5
解く 3⋅2u2+u−2​=5:u=3​,u=−3​,u=3​1​,u=−3​1​
3⋅2u2+u−2​=5
改良2u23(u4+1)​=5
以下で両辺を乗じる:u2
2u23(u4+1)​=5
以下で両辺を乗じる:u22u23(u4+1)​u2=5u2
簡素化23(u4+1)​=5u2
23(u4+1)​=5u2
解く 23(u4+1)​=5u2:u=3​,u=−3​,u=3​1​,u=−3​1​
23(u4+1)​=5u2
以下で両辺を乗じる:2
23(u4+1)​=5u2
以下で両辺を乗じる:223(u4+1)​⋅2=5u2⋅2
簡素化3(u4+1)=10u2
3(u4+1)=10u2
拡張 3(u4+1):3u4+3
3(u4+1)
分配法則を適用する: a(b+c)=ab+aca=3,b=u4,c=1=3u4+3⋅1
数を乗じる:3⋅1=3=3u4+3
3u4+3=10u2
10u2を左側に移動します
3u4+3=10u2
両辺から10u2を引く3u4+3−10u2=10u2−10u2
簡素化3u4+3−10u2=0
3u4+3−10u2=0
標準的な形式で書く an​xn+…+a1​x+a0​=03u4−10u2+3=0
equationを v=u2 と以下で書き換える:v2=u43v2−10v+3=0
解く 3v2−10v+3=0:v=3,v=31​
3v2−10v+3=0
解くとthe二次式
3v2−10v+3=0
二次Equationの公式:
次の場合: a=3,b=−10,c=3v1,2​=2⋅3−(−10)±(−10)2−4⋅3⋅3​​
v1,2​=2⋅3−(−10)±(−10)2−4⋅3⋅3​​
(−10)2−4⋅3⋅3​=8
(−10)2−4⋅3⋅3​
指数の規則を適用する: n が偶数であれば (−a)n=an(−10)2=102=102−4⋅3⋅3​
数を乗じる:4⋅3⋅3=36=102−36​
102=100=100−36​
数を引く:100−36=64=64​
数を因数に分解する:64=82=82​
累乗根の規則を適用する: nan​=a82​=8=8
v1,2​=2⋅3−(−10)±8​
解を分離するv1​=2⋅3−(−10)+8​,v2​=2⋅3−(−10)−8​
v=2⋅3−(−10)+8​:3
2⋅3−(−10)+8​
規則を適用 −(−a)=a=2⋅310+8​
数を足す:10+8=18=2⋅318​
数を乗じる:2⋅3=6=618​
数を割る:618​=3=3
v=2⋅3−(−10)−8​:31​
2⋅3−(−10)−8​
規則を適用 −(−a)=a=2⋅310−8​
数を引く:10−8=2=2⋅32​
数を乗じる:2⋅3=6=62​
共通因数を約分する:2=31​
二次equationの解:v=3,v=31​
v=3,v=31​
再び v=u2に置き換えて以下を解く: u
解く u2=3:u=3​,u=−3​
u2=3
x2=f(a) の場合, 解は x=f(a)​,−f(a)​
u=3​,u=−3​
解く u2=31​:u=3​1​,u=−3​1​
u2=31​
x2=f(a) の場合, 解は x=f(a)​,−f(a)​
u=31​​,u=−31​​
31​​=3​1​
31​​
累乗根の規則を適用する: ba​​=b​a​​,a≥0,b≥0=3​1​​
累乗根の規則を適用する: 1​=11​=1=3​1​
−31​​=−3​1​
−31​​
累乗根の規則を適用する: ba​​=b​a​​,a≥0,b≥0=−3​1​​
累乗根の規則を適用する: 1​=11​=1=−3​1​
u=3​1​,u=−3​1​
解答は
u=3​,u=−3​,u=3​1​,u=−3​1​
u=3​,u=−3​,u=3​1​,u=−3​1​
解を検算する
未定義の (特異) 点を求める:u=0
32u2+u−2​ の分母をゼロに比較する
解く u2=0:u=0
u2=0
規則を適用 xn=0⇒x=0
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u=3​,u=−3​,u=3​1​,u=−3​1​
u=3​,u=−3​,u=3​1​,u=−3​1​
再び u=exに置き換えて以下を解く: x
解く ex=3​:x=21​ln(3)
ex=3​
指数の規則を適用する
ex=3​
指数の規則を適用する: a​=a21​3​=321​ex=321​
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(ex)=ln(321​)
対数の規則を適用する: ln(ea)=aln(ex)=xx=ln(321​)
対数の規則を適用する: ln(xa)=a⋅ln(x)ln(321​)=21​ln(3)x=21​ln(3)
x=21​ln(3)
解く ex=−3​:以下の解はない: x∈R
ex=−3​
af(x) は以下の場合, ゼロまたは負にできない: x∈R以下の解はない:x∈R
解く ex=3​1​:x=−21​ln(3)
ex=3​1​
指数の規則を適用する
ex=3​1​
指数の規則を適用する: ab1​=a−b3​1​=3−21​ex=3−21​
指数の規則を適用する: na​=an1​3−21​=3−21​ex=3−21​
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(ex)=ln(3−21​)
対数の規則を適用する: ln(ea)=aln(ex)=xx=ln(3−21​)
対数の規則を適用する: ln(xa)=a⋅ln(x)ln(3−21​)=−21​ln(3)x=−21​ln(3)
x=−21​ln(3)
解く ex=−3​1​:以下の解はない: x∈R
ex=−3​1​
指数の規則を適用する
ex=−3​1​
指数の規則を適用する: ab1​=a−b3​1​=3−21​ex=−3−21​
ex=−3−21​
af(x) は以下の場合, ゼロまたは負にできない: x∈R以下の解はない:x∈R
x=21​ln(3),x=−21​ln(3)
x=21​ln(3),x=−21​ln(3)

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

tan(2θ)=(2tan(θ))/(1-tan(θ))tan(2θ)=1−tan(θ)2tan(θ)​sqrt(2)cos(θ)+1=02​cos(θ)+1=04sqrt(2)tan(x)-sqrt(2)=3sqrt(2)tan(x)42​tan(x)−2​=32​tan(x)7sin(2x)+12cos(x)=07sin(2x)+12cos(x)=0solvefor θ,cos(θ)=-cos(40)solveforθ,cos(θ)=−cos(40∘)
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024