解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

tan^2(x)+5cos(x)-8=0

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

tan2(x)+5cos(x)−8=0

解

x=1.88390…+2πn,x=−1.88390…+2πn,x=1.18685…+2πn,x=2π−1.18685…+2πn
+1
度
x=107.93989…∘+360∘n,x=−107.93989…∘+360∘n,x=68.00170…∘+360∘n,x=291.99829…∘+360∘n
解答ステップ
tan2(x)+5cos(x)−8=0
三角関数の公式を使用して書き換える
−8+tan2(x)+5cos(x)
基本的な三角関数の公式を使用する: tan(x)=cos(x)sin(x)​=−8+(cos(x)sin(x)​)2+5cos(x)
指数の規則を適用する: (ba​)c=bcac​=−8+cos2(x)sin2(x)​+5cos(x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−8+cos2(x)1−cos2(x)​+5cos(x)
−8+cos2(x)1−cos2(x)​+5cos(x)=0
置換で解く
−8+cos2(x)1−cos2(x)​+5cos(x)=0
仮定:cos(x)=u−8+u21−u2​+5u=0
−8+u21−u2​+5u=0:u≈−0.30801…,u≈0.37457…,u≈1.73344…
−8+u21−u2​+5u=0
以下で両辺を乗じる:u2
−8+u21−u2​+5u=0
以下で両辺を乗じる:u2−8u2+u21−u2​u2+5uu2=0⋅u2
簡素化
−8u2+u21−u2​u2+5uu2=0⋅u2
簡素化 u21−u2​u2:1−u2
u21−u2​u2
分数を乗じる: a⋅cb​=ca⋅b​=u2(1−u2)u2​
共通因数を約分する:u2=1−u2
簡素化 5uu2:5u3
5uu2
指数の規則を適用する: ab⋅ac=ab+cuu2=u1+2=5u1+2
数を足す:1+2=3=5u3
簡素化 0⋅u2:0
0⋅u2
規則を適用 0⋅a=0=0
−8u2+1−u2+5u3=0
簡素化 −8u2+1−u2+5u3:5u3−9u2+1
−8u2+1−u2+5u3
条件のようなグループ=5u3−8u2−u2+1
類似した元を足す:−8u2−u2=−9u2=5u3−9u2+1
5u3−9u2+1=0
5u3−9u2+1=0
5u3−9u2+1=0
解く 5u3−9u2+1=0:u≈−0.30801…,u≈0.37457…,u≈1.73344…
5u3−9u2+1=0
ニュートン・ラプソン法を使用して 5u3−9u2+1=0 の解を1つ求める:u≈−0.30801…
5u3−9u2+1=0
ニュートン・ラプソン概算の定義
f(u)=5u3−9u2+1
発見する f′(u):15u2−18u
dud​(5u3−9u2+1)
和/差の法則を適用: (f±g)′=f′±g′=dud​(5u3)−dud​(9u2)+dud​(1)
dud​(5u3)=15u2
dud​(5u3)
定数を除去: (a⋅f)′=a⋅f′=5dud​(u3)
乗の法則を適用: dxd​(xa)=a⋅xa−1=5⋅3u3−1
簡素化=15u2
dud​(9u2)=18u
dud​(9u2)
定数を除去: (a⋅f)′=a⋅f′=9dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=9⋅2u2−1
簡素化=18u
dud​(1)=0
dud​(1)
定数の導関数: dxd​(a)=0=0
=15u2−18u+0
簡素化=15u2−18u
仮定: u0​=−1Δun+1​<になるまで un+1​を計算する 0.000001
u1​=−0.60606…:Δu1​=0.39393…
f(u0​)=5(−1)3−9(−1)2+1=−13f′(u0​)=15(−1)2−18(−1)=33u1​=−0.60606…
Δu1​=∣−0.60606…−(−1)∣=0.39393…Δu1​=0.39393…
u2​=−0.39783…:Δu2​=0.20822…
f(u1​)=5(−0.60606…)3−9(−0.60606…)2+1=−3.41884…f′(u1​)=15(−0.60606…)2−18(−0.60606…)=16.41873…u2​=−0.39783…
Δu2​=∣−0.39783…−(−0.60606…)∣=0.20822…Δu2​=0.20822…
u3​=−0.32030…:Δu3​=0.07753…
f(u2​)=5(−0.39783…)3−9(−0.39783…)2+1=−0.73926…f′(u2​)=15(−0.39783…)2−18(−0.39783…)=9.53504…u3​=−0.32030…
Δu3​=∣−0.32030…−(−0.39783…)∣=0.07753…Δu3​=0.07753…
u4​=−0.30830…:Δu4​=0.01199…
f(u3​)=5(−0.32030…)3−9(−0.32030…)2+1=−0.08764…f′(u3​)=15(−0.32030…)2−18(−0.32030…)=7.30431…u4​=−0.30830…
Δu4​=∣−0.30830…−(−0.32030…)∣=0.01199…Δu4​=0.01199…
u5​=−0.30801…:Δu5​=0.00028…
f(u4​)=5(−0.30830…)3−9(−0.30830…)2+1=−0.00197…f′(u4​)=15(−0.30830…)2−18(−0.30830…)=6.97521…u5​=−0.30801…
Δu5​=∣−0.30801…−(−0.30830…)∣=0.00028…Δu5​=0.00028…
u6​=−0.30801…:Δu6​=1.5734E−7
f(u5​)=5(−0.30801…)3−9(−0.30801…)2+1=−1.09626E−6f′(u5​)=15(−0.30801…)2−18(−0.30801…)=6.96748…u6​=−0.30801…
Δu6​=∣−0.30801…−(−0.30801…)∣=1.5734E−7Δu6​=1.5734E−7
u≈−0.30801…
長除法を適用する:u+0.30801…5u3−9u2+1​=5u2−10.54009…u+3.24655…
5u2−10.54009…u+3.24655…≈0
ニュートン・ラプソン法を使用して 5u2−10.54009…u+3.24655…=0 の解を1つ求める:u≈0.37457…
5u2−10.54009…u+3.24655…=0
ニュートン・ラプソン概算の定義
f(u)=5u2−10.54009…u+3.24655…
発見する f′(u):10u−10.54009…
dud​(5u2−10.54009…u+3.24655…)
和/差の法則を適用: (f±g)′=f′±g′=dud​(5u2)−dud​(10.54009…u)+dud​(3.24655…)
dud​(5u2)=10u
dud​(5u2)
定数を除去: (a⋅f)′=a⋅f′=5dud​(u2)
乗の法則を適用: dxd​(xa)=a⋅xa−1=5⋅2u2−1
簡素化=10u
dud​(10.54009…u)=10.54009…
dud​(10.54009…u)
定数を除去: (a⋅f)′=a⋅f′=10.54009…dudu​
共通の導関数を適用: dudu​=1=10.54009…⋅1
簡素化=10.54009…
dud​(3.24655…)=0
dud​(3.24655…)
定数の導関数: dxd​(a)=0=0
=10u−10.54009…+0
簡素化=10u−10.54009…
仮定: u0​=0Δun+1​<になるまで un+1​を計算する 0.000001
u1​=0.30801…:Δu1​=0.30801…
f(u0​)=5⋅02−10.54009…⋅0+3.24655…=3.24655…f′(u0​)=10⋅0−10.54009…=−10.54009…u1​=0.30801…
Δu1​=∣0.30801…−0∣=0.30801…Δu1​=0.30801…
u2​=0.37160…:Δu2​=0.06359…
f(u1​)=5⋅0.30801…2−10.54009…⋅0.30801…+3.24655…=0.47437…f′(u1​)=10⋅0.30801…−10.54009…=−7.45990…u2​=0.37160…
Δu2​=∣0.37160…−0.30801…∣=0.06359…Δu2​=0.06359…
u3​=0.37457…:Δu3​=0.00296…
f(u2​)=5⋅0.37160…2−10.54009…⋅0.37160…+3.24655…=0.02021…f′(u2​)=10⋅0.37160…−10.54009…=−6.82399…u3​=0.37457…
Δu3​=∣0.37457…−0.37160…∣=0.00296…Δu3​=0.00296…
u4​=0.37457…:Δu4​=6.46028E−6
f(u3​)=5⋅0.37457…2−10.54009…⋅0.37457…+3.24655…=0.00004…f′(u3​)=10⋅0.37457…−10.54009…=−6.79437…u4​=0.37457…
Δu4​=∣0.37457…−0.37457…∣=6.46028E−6Δu4​=6.46028E−6
u5​=0.37457…:Δu5​=3.07134E−11
f(u4​)=5⋅0.37457…2−10.54009…⋅0.37457…+3.24655…=2.08676E−10f′(u4​)=10⋅0.37457…−10.54009…=−6.79430…u5​=0.37457…
Δu5​=∣0.37457…−0.37457…∣=3.07134E−11Δu5​=3.07134E−11
u≈0.37457…
長除法を適用する:u−0.37457…5u2−10.54009…u+3.24655…​=5u−8.66720…
5u−8.66720…≈0
u≈1.73344…
解答はu≈−0.30801…,u≈0.37457…,u≈1.73344…
u≈−0.30801…,u≈0.37457…,u≈1.73344…
解を検算する
未定義の (特異) 点を求める:u=0
−8+u21−u2​+5u の分母をゼロに比較する
解く u2=0:u=0
u2=0
規則を適用 xn=0⇒x=0
u=0
以下の点は定義されていないu=0
未定義のポイントを解に組み合わせる:
u≈−0.30801…,u≈0.37457…,u≈1.73344…
代用を戻す u=cos(x)cos(x)≈−0.30801…,cos(x)≈0.37457…,cos(x)≈1.73344…
cos(x)≈−0.30801…,cos(x)≈0.37457…,cos(x)≈1.73344…
cos(x)=−0.30801…:x=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn
cos(x)=−0.30801…
三角関数の逆数プロパティを適用する
cos(x)=−0.30801…
以下の一般解 cos(x)=−0.30801…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn
x=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn
cos(x)=0.37457…:x=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
cos(x)=0.37457…
三角関数の逆数プロパティを適用する
cos(x)=0.37457…
以下の一般解 cos(x)=0.37457…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
x=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
cos(x)=1.73344…:解なし
cos(x)=1.73344…
−1≤cos(x)≤1解なし
すべての解を組み合わせるx=arccos(−0.30801…)+2πn,x=−arccos(−0.30801…)+2πn,x=arccos(0.37457…)+2πn,x=2π−arccos(0.37457…)+2πn
10進法形式で解を証明するx=1.88390…+2πn,x=−1.88390…+2πn,x=1.18685…+2πn,x=2π−1.18685…+2πn

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

3sin(x)=2-2sin^2(x)3sin(x)=2−2sin2(x)100=100+40sin((9pi)/4 t)100=100+40sin(49π​t)tan(φ)=-1/(sqrt(3))tan(φ)=−3​1​sin(3m)=0sin(3m)=0cos(a)=-8/17 ,sin(b)= 3/5cos(a)=−178​,sin(b)=53​
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024