Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

sec^{22}(x)=1-tan^2(x)

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

sec22(x)=1−tan2(x)

Soluzione

x=2πn,x=π+2πn
+1
Gradi
x=0∘+360∘n,x=180∘+360∘n
Fasi della soluzione
sec22(x)=1−tan2(x)
Sottrarre 1−tan2(x) da entrambi i latisec22(x)−1+tan2(x)=0
Riscrivere utilizzando identità trigonometriche
−1+sec22(x)+tan2(x)
Usa l'identità pitagorica: tan2(x)+1=sec2(x)tan2(x)=sec2(x)−1=−1+sec22(x)+sec2(x)−1
Semplificare −1+sec22(x)+sec2(x)−1:sec22(x)+sec2(x)−2
−1+sec22(x)+sec2(x)−1
Raggruppa termini simili=sec22(x)+sec2(x)−1−1
Sottrai i numeri: −1−1=−2=sec22(x)+sec2(x)−2
=sec22(x)+sec2(x)−2
−2+sec22(x)+sec2(x)=0
Risolvi per sostituzione
−2+sec22(x)+sec2(x)=0
Sia: sec(x)=u−2+u22+u2=0
−2+u22+u2=0:u=1,u=−1
−2+u22+u2=0
Scrivi in forma standard an​xn+…+a1​x+a0​=0u22+u2−2=0
Riscrivi l'equazione con v=u2 e v11=u22v11+v−2=0
Risolvi v11+v−2=0:v=1
v11+v−2=0
Fattorizza v11+v−2:(v−1)(v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2)
v11+v−2
Usa il teorema della radice razionale
a0​=2,an​=1
I divisori of a0​:1,2,I divisori di an​:1
Quindi, controlla i seguenti numeri razionali:±11,2​
11​ è una radice della seguente espressione, quindi il fattore è v−1
=(v−1)v−1v11+v−2​
v−1v11+v−2​=v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2
v−1v11+v−2​
Dividere v−1v11+v−2​:v−1v11+v−2​=v10+v−1v10+v−2​
Dividi i principali coefficienti per il numeratore v11+v−2
and the divisor v−1:vv11​=v10
Quoziente=v10
Moltiplica v−1 per v10:v11−v10Sottrarre v11−v10 da v11+v−2 per ottenere un nuovo restoResto=v10+v−2
Quindiv−1v11+v−2​=v10+v−1v10+v−2​
=v10+v−1v10+v−2​
Dividere v−1v10+v−2​:v−1v10+v−2​=v9+v−1v9+v−2​
Dividi i principali coefficienti per il numeratore v10+v−2
and the divisor v−1:vv10​=v9
Quoziente=v9
Moltiplica v−1 per v9:v10−v9Sottrarre v10−v9 da v10+v−2 per ottenere un nuovo restoResto=v9+v−2
Quindiv−1v10+v−2​=v9+v−1v9+v−2​
=v10+v9+v−1v9+v−2​
Dividere v−1v9+v−2​:v−1v9+v−2​=v8+v−1v8+v−2​
Dividi i principali coefficienti per il numeratore v9+v−2
and the divisor v−1:vv9​=v8
Quoziente=v8
Moltiplica v−1 per v8:v9−v8Sottrarre v9−v8 da v9+v−2 per ottenere un nuovo restoResto=v8+v−2
Quindiv−1v9+v−2​=v8+v−1v8+v−2​
=v10+v9+v8+v−1v8+v−2​
Dividere v−1v8+v−2​:v−1v8+v−2​=v7+v−1v7+v−2​
Dividi i principali coefficienti per il numeratore v8+v−2
and the divisor v−1:vv8​=v7
Quoziente=v7
Moltiplica v−1 per v7:v8−v7Sottrarre v8−v7 da v8+v−2 per ottenere un nuovo restoResto=v7+v−2
Quindiv−1v8+v−2​=v7+v−1v7+v−2​
=v10+v9+v8+v7+v−1v7+v−2​
Dividere v−1v7+v−2​:v−1v7+v−2​=v6+v−1v6+v−2​
Dividi i principali coefficienti per il numeratore v7+v−2
and the divisor v−1:vv7​=v6
Quoziente=v6
Moltiplica v−1 per v6:v7−v6Sottrarre v7−v6 da v7+v−2 per ottenere un nuovo restoResto=v6+v−2
Quindiv−1v7+v−2​=v6+v−1v6+v−2​
=v10+v9+v8+v7+v6+v−1v6+v−2​
Dividere v−1v6+v−2​:v−1v6+v−2​=v5+v−1v5+v−2​
Dividi i principali coefficienti per il numeratore v6+v−2
and the divisor v−1:vv6​=v5
Quoziente=v5
Moltiplica v−1 per v5:v6−v5Sottrarre v6−v5 da v6+v−2 per ottenere un nuovo restoResto=v5+v−2
Quindiv−1v6+v−2​=v5+v−1v5+v−2​
=v10+v9+v8+v7+v6+v5+v−1v5+v−2​
Dividere v−1v5+v−2​:v−1v5+v−2​=v4+v−1v4+v−2​
Dividi i principali coefficienti per il numeratore v5+v−2
and the divisor v−1:vv5​=v4
Quoziente=v4
Moltiplica v−1 per v4:v5−v4Sottrarre v5−v4 da v5+v−2 per ottenere un nuovo restoResto=v4+v−2
Quindiv−1v5+v−2​=v4+v−1v4+v−2​
=v10+v9+v8+v7+v6+v5+v4+v−1v4+v−2​
Dividere v−1v4+v−2​:v−1v4+v−2​=v3+v−1v3+v−2​
Dividi i principali coefficienti per il numeratore v4+v−2
and the divisor v−1:vv4​=v3
Quoziente=v3
Moltiplica v−1 per v3:v4−v3Sottrarre v4−v3 da v4+v−2 per ottenere un nuovo restoResto=v3+v−2
Quindiv−1v4+v−2​=v3+v−1v3+v−2​
=v10+v9+v8+v7+v6+v5+v4+v3+v−1v3+v−2​
Dividere v−1v3+v−2​:v−1v3+v−2​=v2+v−1v2+v−2​
Dividi i principali coefficienti per il numeratore v3+v−2
and the divisor v−1:vv3​=v2
Quoziente=v2
Moltiplica v−1 per v2:v3−v2Sottrarre v3−v2 da v3+v−2 per ottenere un nuovo restoResto=v2+v−2
Quindiv−1v3+v−2​=v2+v−1v2+v−2​
=v10+v9+v8+v7+v6+v5+v4+v3+v2+v−1v2+v−2​
Dividere v−1v2+v−2​:v−1v2+v−2​=v+v−12v−2​
Dividi i principali coefficienti per il numeratore v2+v−2
and the divisor v−1:vv2​=v
Quoziente=v
Moltiplica v−1 per v:v2−vSottrarre v2−v da v2+v−2 per ottenere un nuovo restoResto=2v−2
Quindiv−1v2+v−2​=v+v−12v−2​
=v10+v9+v8+v7+v6+v5+v4+v3+v2+v+v−12v−2​
Dividere v−12v−2​:v−12v−2​=2
Dividi i principali coefficienti per il numeratore 2v−2
and the divisor v−1:v2v​=2
Quoziente=2
Moltiplica v−1 per 2:2v−2Sottrarre 2v−2 da 2v−2 per ottenere un nuovo restoResto=0
Quindiv−12v−2​=2
=v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2
=(v−1)(v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2)
(v−1)(v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2)=0
Usando il Principio del Fattore Zero: If ab=0allora a=0o b=0v−1=0orv10+v9+v8+v7+v6+v5+v4+v3+v2+v+2=0
Risolvi v−1=0:v=1
v−1=0
Spostare 1a destra dell'equazione
v−1=0
Aggiungi 1 ad entrambi i lativ−1+1=0+1
Semplificarev=1
v=1
Risolvi v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2=0:Nessuna soluzione per v∈R
v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2=0
Trova una soluzione per v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2=0 utilizzando Newton-Raphson:Nessuna soluzione per v∈R
v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2=0
Definizione di approssimazione di Newton-Raphson
f(v)=v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2
Trova f′(v):10v9+9v8+8v7+7v6+6v5+5v4+4v3+3v2+2v+1
dvd​(v10+v9+v8+v7+v6+v5+v4+v3+v2+v+2)
Applica la regola della somma/differenza: (f±g)′=f′±g′=dvd​(v10)+dvd​(v9)+dvd​(v8)+dvd​(v7)+dvd​(v6)+dvd​(v5)+dvd​(v4)+dvd​(v3)+dvd​(v2)+dvdv​+dvd​(2)
dvd​(v10)=10v9
dvd​(v10)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=10v10−1
Semplificare=10v9
dvd​(v9)=9v8
dvd​(v9)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=9v9−1
Semplificare=9v8
dvd​(v8)=8v7
dvd​(v8)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=8v8−1
Semplificare=8v7
dvd​(v7)=7v6
dvd​(v7)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=7v7−1
Semplificare=7v6
dvd​(v6)=6v5
dvd​(v6)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=6v6−1
Semplificare=6v5
dvd​(v5)=5v4
dvd​(v5)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=5v5−1
Semplificare=5v4
dvd​(v4)=4v3
dvd​(v4)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=4v4−1
Semplificare=4v3
dvd​(v3)=3v2
dvd​(v3)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=3v3−1
Semplificare=3v2
dvd​(v2)=2v
dvd​(v2)
Applica la regola della potenza: dxd​(xa)=a⋅xa−1=2v2−1
Semplificare=2v
dvdv​=1
dvdv​
Applica la derivata comune: dvdv​=1=1
dvd​(2)=0
dvd​(2)
Derivata di una costante: dxd​(a)=0=0
=10v9+9v8+8v7+7v6+6v5+5v4+4v3+3v2+2v+1+0
Semplificare=10v9+9v8+8v7+7v6+6v5+5v4+4v3+3v2+2v+1
Sia v0​=−2Calcola vn+1​ fino a Deltavn+1​<0.000001
v1​=−1.80606…:Δv1​=0.19393…
f(v0​)=(−2)10+(−2)9+(−2)8+(−2)7+(−2)6+(−2)5+(−2)4+(−2)3+(−2)2+(−2)+2=684f′(v0​)=10(−2)9+9(−2)8+8(−2)7+7(−2)6+6(−2)5+5(−2)4+4(−2)3+3(−2)2+2(−2)+1=−3527v1​=−1.80606…
Δv1​=∣−1.80606…−(−2)∣=0.19393…Δv1​=0.19393…
v2​=−1.63066…:Δv2​=0.17540…
f(v1​)=(−1.80606…)10+(−1.80606…)9+(−1.80606…)8+(−1.80606…)7+(−1.80606…)6+(−1.80606…)5+(−1.80606…)4+(−1.80606…)3+(−1.80606…)2+(−1.80606…)+2=239.02703…f′(v1​)=10(−1.80606…)9+9(−1.80606…)8+8(−1.80606…)7+7(−1.80606…)6+6(−1.80606…)5+5(−1.80606…)4+4(−1.80606…)3+3(−1.80606…)2+2(−1.80606…)+1=−1362.72658…v2​=−1.63066…
Δv2​=∣−1.63066…−(−1.80606…)∣=0.17540…Δv2​=0.17540…
v3​=−1.47089…:Δv3​=0.15976…
f(v2​)=(−1.63066…)10+(−1.63066…)9+(−1.63066…)8+(−1.63066…)7+(−1.63066…)6+(−1.63066…)5+(−1.63066…)4+(−1.63066…)3+(−1.63066…)2+(−1.63066…)+2=83.78328…f′(v2​)=10(−1.63066…)9+9(−1.63066…)8+8(−1.63066…)7+7(−1.63066…)6+6(−1.63066…)5+5(−1.63066…)4+4(−1.63066…)3+3(−1.63066…)2+2(−1.63066…)+1=−524.39987…v3​=−1.47089…
Δv3​=∣−1.47089…−(−1.63066…)∣=0.15976…Δv3​=0.15976…
v4​=−1.32236…:Δv4​=0.14852…
f(v3​)=(−1.47089…)10+(−1.47089…)9+(−1.47089…)8+(−1.47089…)7+(−1.47089…)6+(−1.47089…)5+(−1.47089…)4+(−1.47089…)3+(−1.47089…)2+(−1.47089…)+2=29.62369…f′(v3​)=10(−1.47089…)9+9(−1.47089…)8+8(−1.47089…)7+7(−1.47089…)6+6(−1.47089…)5+5(−1.47089…)4+4(−1.47089…)3+3(−1.47089…)2+2(−1.47089…)+1=−199.44976…v4​=−1.32236…
Δv4​=∣−1.32236…−(−1.47089…)∣=0.14852…Δv4​=0.14852…
v5​=−1.17573…:Δv5​=0.14662…
f(v4​)=(−1.32236…)10+(−1.32236…)9+(−1.32236…)8+(−1.32236…)7+(−1.32236…)6+(−1.32236…)5+(−1.32236…)4+(−1.32236…)3+(−1.32236…)2+(−1.32236…)+2=10.74041…f′(v4​)=10(−1.32236…)9+9(−1.32236…)8+8(−1.32236…)7+7(−1.32236…)6+6(−1.32236…)5+5(−1.32236…)4+4(−1.32236…)3+3(−1.32236…)2+2(−1.32236…)+1=−73.24877…v5​=−1.17573…
Δv5​=∣−1.17573…−(−1.32236…)∣=0.14662…Δv5​=0.14662…
v6​=−1.00166…:Δv6​=0.17407…
f(v5​)=(−1.17573…)10+(−1.17573…)9+(−1.17573…)8+(−1.17573…)7+(−1.17573…)6+(−1.17573…)5+(−1.17573…)4+(−1.17573…)3+(−1.17573…)2+(−1.17573…)+2=4.18738…f′(v5​)=10(−1.17573…)9+9(−1.17573…)8+8(−1.17573…)7+7(−1.17573…)6+6(−1.17573…)5+5(−1.17573…)4+4(−1.17573…)3+3(−1.17573…)2+2(−1.17573…)+1=−24.05562…v6​=−1.00166…
Δv6​=∣−1.00166…−(−1.17573…)∣=0.17407…Δv6​=0.17407…
v7​=−0.60661…:Δv7​=0.39505…
f(v6​)=(−1.00166…)10+(−1.00166…)9+(−1.00166…)8+(−1.00166…)7+(−1.00166…)6+(−1.00166…)5+(−1.00166…)4+(−1.00166…)3+(−1.00166…)2+(−1.00166…)+2=2.00840…f′(v6​)=10(−1.00166…)9+9(−1.00166…)8+8(−1.00166…)7+7(−1.00166…)6+6(−1.00166…)5+5(−1.00166…)4+4(−1.00166…)3+3(−1.00166…)2+2(−1.00166…)+1=−5.08391…v7​=−0.60661…
Δv7​=∣−0.60661…−(−1.00166…)∣=0.39505…Δv7​=0.39505…
v8​=−5.34688…:Δv8​=4.74026…
f(v7​)=(−0.60661…)10+(−0.60661…)9+(−0.60661…)8+(−0.60661…)7+(−0.60661…)6+(−0.60661…)5+(−0.60661…)4+(−0.60661…)3+(−0.60661…)2+(−0.60661…)+2=1.62497…f′(v7​)=10(−0.60661…)9+9(−0.60661…)8+8(−0.60661…)7+7(−0.60661…)6+6(−0.60661…)5+5(−0.60661…)4+4(−0.60661…)3+3(−0.60661…)2+2(−0.60661…)+1=0.34280…v8​=−5.34688…
Δv8​=∣−5.34688…−(−0.60661…)∣=4.74026…Δv8​=4.74026…
v9​=−4.82048…:Δv9​=0.52639…
f(v8​)=(−5.34688…)10+(−5.34688…)9+(−5.34688…)8+(−5.34688…)7+(−5.34688…)6+(−5.34688…)5+(−5.34688…)4+(−5.34688…)3+(−5.34688…)2+(−5.34688…)+2=16089690.13941…f′(v8​)=10(−5.34688…)9+9(−5.34688…)8+8(−5.34688…)7+7(−5.34688…)6+6(−5.34688…)5+5(−5.34688…)4+4(−5.34688…)3+3(−5.34688…)2+2(−5.34688…)+1=−30565830.39717…v9​=−4.82048…
Δv9​=∣−4.82048…−(−5.34688…)∣=0.52639…Δv9​=0.52639…
v10​=−4.34658…:Δv10​=0.47390…
f(v9​)=(−4.82048…)10+(−4.82048…)9+(−4.82048…)8+(−4.82048…)7+(−4.82048…)6+(−4.82048…)5+(−4.82048…)4+(−4.82048…)3+(−4.82048…)2+(−4.82048…)+2=5611032.52684…f′(v9​)=10(−4.82048…)9+9(−4.82048…)8+8(−4.82048…)7+7(−4.82048…)6+6(−4.82048…)5+5(−4.82048…)4+4(−4.82048…)3+3(−4.82048…)2+2(−4.82048…)+1=−11839945.22082…v10​=−4.34658…
Δv10​=∣−4.34658…−(−4.82048…)∣=0.47390…Δv10​=0.47390…
v11​=−3.91990…:Δv11​=0.42667…
f(v10​)=(−4.34658…)10+(−4.34658…)9+(−4.34658…)8+(−4.34658…)7+(−4.34658…)6+(−4.34658…)5+(−4.34658…)4+(−4.34658…)3+(−4.34658…)2+(−4.34658…)+2=1956819.81301…f′(v10​)=10(−4.34658…)9+9(−4.34658…)8+8(−4.34658…)7+7(−4.34658…)6+6(−4.34658…)5+5(−4.34658…)4+4(−4.34658…)3+3(−4.34658…)2+2(−4.34658…)+1=−4586173.62069…v11​=−3.91990…
Δv11​=∣−3.91990…−(−4.34658…)∣=0.42667…Δv11​=0.42667…
v12​=−3.53572…:Δv12​=0.38418…
f(v11​)=(−3.91990…)10+(−3.91990…)9+(−3.91990…)8+(−3.91990…)7+(−3.91990…)6+(−3.91990…)5+(−3.91990…)4+(−3.91990…)3+(−3.91990…)2+(−3.91990…)+2=682454.88750…f′(v11​)=10(−3.91990…)9+9(−3.91990…)8+8(−3.91990…)7+7(−3.91990…)6+6(−3.91990…)5+5(−3.91990…)4+4(−3.91990…)3+3(−3.91990…)2+2(−3.91990…)+1=−1776382.62957…v12​=−3.53572…
Δv12​=∣−3.53572…−(−3.91990…)∣=0.38418…Δv12​=0.38418…
v13​=−3.18977…:Δv13​=0.34594…
f(v12​)=(−3.53572…)10+(−3.53572…)9+(−3.53572…)8+(−3.53572…)7+(−3.53572…)6+(−3.53572…)5+(−3.53572…)4+(−3.53572…)3+(−3.53572…)2+(−3.53572…)+2=238020.64656…f′(v12​)=10(−3.53572…)9+9(−3.53572…)8+8(−3.53572…)7+7(−3.53572…)6+6(−3.53572…)5+5(−3.53572…)4+4(−3.53572…)3+3(−3.53572…)2+2(−3.53572…)+1=−688026.64330…v13​=−3.18977…
Δv13​=∣−3.18977…−(−3.53572…)∣=0.34594…Δv13​=0.34594…
v14​=−2.87822…:Δv14​=0.31154…
f(v13​)=(−3.18977…)10+(−3.18977…)9+(−3.18977…)8+(−3.18977…)7+(−3.18977…)6+(−3.18977…)5+(−3.18977…)4+(−3.18977…)3+(−3.18977…)2+(−3.18977…)+2=83018.73554…f′(v13​)=10(−3.18977…)9+9(−3.18977…)8+8(−3.18977…)7+7(−3.18977…)6+6(−3.18977…)5+5(−3.18977…)4+4(−3.18977…)3+3(−3.18977…)2+2(−3.18977…)+1=−266473.07023…v14​=−2.87822…
Δv14​=∣−2.87822…−(−3.18977…)∣=0.31154…Δv14​=0.31154…
v15​=−2.59762…:Δv15​=0.28060…
f(v14​)=(−2.87822…)10+(−2.87822…)9+(−2.87822…)8+(−2.87822…)7+(−2.87822…)6+(−2.87822…)5+(−2.87822…)4+(−2.87822…)3+(−2.87822…)2+(−2.87822…)+2=28957.64859…f′(v14​)=10(−2.87822…)9+9(−2.87822…)8+8(−2.87822…)7+7(−2.87822…)6+6(−2.87822…)5+5(−2.87822…)4+4(−2.87822…)3+3(−2.87822…)2+2(−2.87822…)+1=−103198.93705…v15​=−2.59762…
Δv15​=∣−2.59762…−(−2.87822…)∣=0.28060…Δv15​=0.28060…
v16​=−2.34485…:Δv16​=0.25277…
f(v15​)=(−2.59762…)10+(−2.59762…)9+(−2.59762…)8+(−2.59762…)7+(−2.59762…)6+(−2.59762…)5+(−2.59762…)4+(−2.59762…)3+(−2.59762…)2+(−2.59762…)+2=10101.49087…f′(v15​)=10(−2.59762…)9+9(−2.59762…)8+8(−2.59762…)7+7(−2.59762…)6+6(−2.59762…)5+5(−2.59762…)4+4(−2.59762…)3+3(−2.59762…)2+2(−2.59762…)+1=−39963.14592…v16​=−2.34485…
Δv16​=∣−2.34485…−(−2.59762…)∣=0.25277…Δv16​=0.25277…
v17​=−2.11709…:Δv17​=0.22776…
f(v16​)=(−2.34485…)10+(−2.34485…)9+(−2.34485…)8+(−2.34485…)7+(−2.34485…)6+(−2.34485…)5+(−2.34485…)4+(−2.34485…)3+(−2.34485…)2+(−2.34485…)+2=3524.23142…f′(v16​)=10(−2.34485…)9+9(−2.34485…)8+8(−2.34485…)7+7(−2.34485…)6+6(−2.34485…)5+5(−2.34485…)4+4(−2.34485…)3+3(−2.34485…)2+2(−2.34485…)+1=−15473.15593…v17​=−2.11709…
Δv17​=∣−2.11709…−(−2.34485…)∣=0.22776…Δv17​=0.22776…
v18​=−1.91174…:Δv18​=0.20535…
f(v17​)=(−2.11709…)10+(−2.11709…)9+(−2.11709…)8+(−2.11709…)7+(−2.11709…)6+(−2.11709…)5+(−2.11709…)4+(−2.11709…)3+(−2.11709…)2+(−2.11709…)+2=1229.86602…f′(v17​)=10(−2.11709…)9+9(−2.11709…)8+8(−2.11709…)7+7(−2.11709…)6+6(−2.11709…)5+5(−2.11709…)4+4(−2.11709…)3+3(−2.11709…)2+2(−2.11709…)+1=−5989.04315…v18​=−1.91174…
Δv18​=∣−1.91174…−(−2.11709…)∣=0.20535…Δv18​=0.20535…
v19​=−1.72632…:Δv19​=0.18541…
f(v18​)=(−1.91174…)10+(−1.91174…)9+(−1.91174…)8+(−1.91174…)7+(−1.91174…)6+(−1.91174…)5+(−1.91174…)4+(−1.91174…)3+(−1.91174…)2+(−1.91174…)+2=429.46495…f′(v18​)=10(−1.91174…)9+9(−1.91174…)8+8(−1.91174…)7+7(−1.91174…)6+6(−1.91174…)5+5(−1.91174…)4+4(−1.91174…)3+3(−1.91174…)2+2(−1.91174…)+1=−2316.22500…v19​=−1.72632…
Δv19​=∣−1.72632…−(−1.91174…)∣=0.18541…Δv19​=0.18541…
v20​=−1.55824…:Δv20​=0.16807…
f(v19​)=(−1.72632…)10+(−1.72632…)9+(−1.72632…)8+(−1.72632…)7+(−1.72632…)6+(−1.72632…)5+(−1.72632…)4+(−1.72632…)3+(−1.72632…)2+(−1.72632…)+2=150.22439…f′(v19​)=10(−1.72632…)9+9(−1.72632…)8+8(−1.72632…)7+7(−1.72632…)6+6(−1.72632…)5+5(−1.72632…)4+4(−1.72632…)3+3(−1.72632…)2+2(−1.72632…)+1=−893.77355…v20​=−1.55824…
Δv20​=∣−1.55824…−(−1.72632…)∣=0.16807…Δv20​=0.16807…
v21​=−1.40415…:Δv21​=0.15408…
f(v20​)=(−1.55824…)10+(−1.55824…)9+(−1.55824…)8+(−1.55824…)7+(−1.55824…)6+(−1.55824…)5+(−1.55824…)4+(−1.55824…)3+(−1.55824…)2+(−1.55824…)+2=52.80177…f′(v20​)=10(−1.55824…)9+9(−1.55824…)8+8(−1.55824…)7+7(−1.55824…)6+6(−1.55824…)5+5(−1.55824…)4+4(−1.55824…)3+3(−1.55824…)2+2(−1.55824…)+1=−342.67162…v21​=−1.40415…
Δv21​=∣−1.40415…−(−1.55824…)∣=0.15408…Δv21​=0.15408…
v22​=−1.25818…:Δv22​=0.14597…
f(v21​)=(−1.40415…)10+(−1.40415…)9+(−1.40415…)8+(−1.40415…)7+(−1.40415…)6+(−1.40415…)5+(−1.40415…)4+(−1.40415…)3+(−1.40415…)2+(−1.40415…)+2=18.81846…f′(v21​)=10(−1.40415…)9+9(−1.40415…)8+8(−1.40415…)7+7(−1.40415…)6+6(−1.40415…)5+5(−1.40415…)4+4(−1.40415…)3+3(−1.40415…)2+2(−1.40415…)+1=−128.91771…v22​=−1.25818…
Δv22​=∣−1.25818…−(−1.40415…)∣=0.14597…Δv22​=0.14597…
v23​=−1.10566…:Δv23​=0.15251…
f(v22​)=(−1.25818…)10+(−1.25818…)9+(−1.25818…)8+(−1.25818…)7+(−1.25818…)6+(−1.25818…)5+(−1.25818…)4+(−1.25818…)3+(−1.25818…)2+(−1.25818…)+2=6.98182…f′(v22​)=10(−1.25818…)9+9(−1.25818…)8+8(−1.25818…)7+7(−1.25818…)6+6(−1.25818…)5+5(−1.25818…)4+4(−1.25818…)3+3(−1.25818…)2+2(−1.25818…)+1=−45.77704…v23​=−1.10566…
Δv23​=∣−1.10566…−(−1.25818…)∣=0.15251…Δv23​=0.15251…
Non è possibile trovare soluzione
La soluzione èNessunasoluzioneperv∈R
La soluzione èv=1
v=1
Sostituisci v=u2,risolvi per u
Risolvi u2=1:u=1,u=−1
u2=1
Per x2=f(a) le soluzioni sono x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Applicare la regola 1​=1=1
−1​=−1
−1​
Applicare la regola 1​=1=−1
u=1,u=−1
Le soluzioni sono
u=1,u=−1
Sostituire indietro u=sec(x)sec(x)=1,sec(x)=−1
sec(x)=1,sec(x)=−1
sec(x)=1:x=2πn
sec(x)=1
Soluzioni generali per sec(x)=1
sec(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=0+2πn
x=0+2πn
Risolvi x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
sec(x)=−1:x=π+2πn
sec(x)=−1
Soluzioni generali per sec(x)=−1
sec(x) periodicità tabella con 2πn cicli:
x06π​4π​3π​2π​32π​43π​65π​​sec(x)1323​​2​2Undefined−2−2​−323​​​xπ67π​45π​34π​23π​35π​47π​611π​​sec(x)−1−323​​−2​−2Undefined22​323​​​​
x=π+2πn
x=π+2πn
Combinare tutte le soluzionix=2πn,x=π+2πn

Grafico

Sorry, your browser does not support this application
Grafico interattivo

Esempi popolari

2sec(x)=1+cos(x)2sec(x)=1+cos(x)sin^2(x)+cos(x)-cos^2(x)=0sin2(x)+cos(x)−cos2(x)=08(1-sin^2(x))+2sin(x)-7=08(1−sin2(x))+2sin(x)−7=0cot(5x)=1cot(5x)=1tan^2(x)-6tan(x)+1=0tan2(x)−6tan(x)+1=0
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024