You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
derivative of sqrt(8x)
derivative\:\sqrt{8x}
integral of (x^4-7x^2+5)/(x^4)
\int\:\frac{x^{4}-7x^{2}+5}{x^{4}}dx
integral from 0 to 3 of 1/((x-1)^{2/3)}
\int\:_{0}^{3}\frac{1}{(x-1)^{\frac{2}{3}}}dx
y^'=(t^3+19t^3y)/t
y^{\prime\:}=\frac{t^{3}+19t^{3}y}{t}
(\partial)/(\partial y)(-yz)
\frac{\partial\:}{\partial\:y}(-yz)
limit as x approaches-7 of 1/x
\lim\:_{x\to\:-7}(\frac{1}{x})
limit as x approaches 9 of cos((pix)/3)
\lim\:_{x\to\:9}(\cos(\frac{πx}{3}))
tangent of y=x^2-2x
tangent\:y=x^{2}-2x
integral of x^3sqrt(1+x^4)
\int\:x^{3}\sqrt{1+x^{4}}dx
tangent of f(x)= 1/(x-1),\at x=4
tangent\:f(x)=\frac{1}{x-1},\at\:x=4
integral of 4xsin(2x^2)
\int\:4x\sin(2x^{2})dx
(\partial)/(\partial x)(x^6+8xy^5)
\frac{\partial\:}{\partial\:x}(x^{6}+8xy^{5})
(\partial)/(\partial x)(3x+4y)
\frac{\partial\:}{\partial\:x}(3x+4y)
laplacetransform (25t)((t^2)/(25))
laplacetransform\:(25t)(\frac{t^{2}}{25})
derivative of y=(x^2+sin(x))^3
derivative\:y=(x^{2}+\sin(x))^{3}
tangent of f(x)=\sqrt[4]{x}-x,(1,0)
tangent\:f(x)=\sqrt[4]{x}-x,(1,0)
integral of (0.8x+1/(60^2))^{-1/2}
\int\:(0.8x+\frac{1}{60^{2}})^{-\frac{1}{2}}dx
integral from-1 to 3 of 1/5 x^3
\int\:_{-1}^{3}\frac{1}{5}x^{3}dx
tangent of f(x)=3arcsin(x),\at x= 1/2
tangent\:f(x)=3\arcsin(x),\at\:x=\frac{1}{2}
derivative of acsc(2(kx))
\frac{d}{dx}(a\csc(2)(kx))
integral of 5sec^4(x)
\int\:5\sec^{4}(x)dx
derivative of re^{rx}
\frac{d}{dx}(re^{rx})
derivative of 4(5-7x^5)
\frac{d}{dx}(4(5-7x)^{5})
derivative of f(x)= 3/((x+1)^2)
derivative\:f(x)=\frac{3}{(x+1)^{2}}
maclaurin e^{-5x^4}
maclaurin\:e^{-5x^{4}}
derivative of 2^{arcsech(x})
\frac{d}{dx}(2^{\arcsech(x)})
integral of x/(x^4+3)
\int\:\frac{x}{x^{4}+3}dx
inverse oflaplace (12s+8)/((s-1)^5)
inverselaplace\:\frac{12s+8}{(s-1)^{5}}
derivative of 3/(x^3)-1/(x^4)
derivative\:\frac{3}{x^{3}}-\frac{1}{x^{4}}
slope of (26 2/3 ,9),(5,2.5)
slope\:(26\frac{2}{3},9),(5,2.5)
limit as x approaches 0 of x^2cos(x)
\lim\:_{x\to\:0}(x^{2}\cos(x))
tangent of f(x)= 5/x ,\at x=5
tangent\:f(x)=\frac{5}{x},\at\:x=5
integral of (3x)/(x+1)
\int\:\frac{3x}{x+1}dx
integral of 64cos^4(8x)
\int\:64\cos^{4}(8x)dx
integral of 4e^{2t}
\int\:4e^{2t}dt
10y^{''}+60y^'+50y=0
10y^{\prime\:\prime\:}+60y^{\prime\:}+50y=0
derivative of e^{(-x/3})
\frac{d}{dx}(e^{\frac{-x}{3}})
integral of e^{2θ}cos(3θ)
\int\:e^{2θ}\cos(3θ)dθ
derivative of y=2x^2-12x+6
derivative\:y=2x^{2}-12x+6
integral of 1/(x-x^2)
\int\:\frac{1}{x-x^{2}}dx
derivative of pi*x^2
\frac{d}{dx}(π\cdot\:x^{2})
derivative of y=((3x^5+9))/(x^3)
derivative\:y=\frac{(3x^{5}+9)}{x^{3}}
d/(ds)(ln(s^2+9))
\frac{d}{ds}(\ln(s^{2}+9))
derivative of 4t^{-1/8}
derivative\:4t^{-\frac{1}{8}}
derivative of r(x)= 3/(x^4+2)
derivative\:r(x)=\frac{3}{x^{4}+2}
f(x)= 6/(x^3)
f(x)=\frac{6}{x^{3}}
derivative of sin(e^{3x})
\frac{d}{dx}(\sin(e^{3x}))
integral of 2/(\sqrt[3]{3x)}
\int\:\frac{2}{\sqrt[3]{3x}}dx
derivative of 1/(3^x)
derivative\:\frac{1}{3^{x}}
derivative of f(x)=(x^2-1)/(2x+2)
derivative\:f(x)=\frac{x^{2}-1}{2x+2}
derivative of f(x)=4x^4-5x^3+2x-3
derivative\:f(x)=4x^{4}-5x^{3}+2x-3
derivative of x/(a^2sqrt(a^2+x^2))
\frac{d}{dx}(\frac{x}{a^{2}\sqrt{a^{2}+x^{2}}})
derivative of 25ln(x^2-x^2)
\frac{d}{dx}(25\ln(x^{2})-x^{2})
integral from 1 to 4 of x
\int\:_{1}^{4}xdx
integral of e^{-5x}x
\int\:e^{-5x}xdx
implicit (dy)/(dx),x^{2/3}+y^{2/3}=3
implicit\:\frac{dy}{dx},x^{\frac{2}{3}}+y^{\frac{2}{3}}=3
integral of ((x^2-2x))/((x-1)^2)
\int\:\frac{(x^{2}-2x)}{(x-1)^{2}}dx
integral of x^6ln(x)
\int\:x^{6}\ln(x)dx
integral of e^{3-x}
\int\:e^{3-x}dx
(\partial)/(\partial z)(xe^{y/z})
\frac{\partial\:}{\partial\:z}(xe^{\frac{y}{z}})
derivative of e^{cos(x}*sin(x^2-x))
\frac{d}{dx}(e^{\cos(x)}\cdot\:\sin(x^{2}-x))
area 2x^2,2x+6,-1.3,2.3
area\:2x^{2},2x+6,-1.3,2.3
inverse oflaplace s/(s^2+10s+25)
inverselaplace\:\frac{s}{s^{2}+10s+25}
limit as x approaches 0 of 5/x-5/(x^2+x)
\lim\:_{x\to\:0}(\frac{5}{x}-\frac{5}{x^{2}+x})
limit as t approaches 1 of sqrt(t+3)
\lim\:_{t\to\:1}(\sqrt{t+3})
tangent of f(x)=2x^2-5x+3
tangent\:f(x)=2x^{2}-5x+3
limit as x approaches 0+of ln(1+sqrt(x))
\lim\:_{x\to\:0+}(\ln(1+\sqrt{x}))
tangent of y=5tan(x),(pi/4 ,5)
tangent\:y=5\tan(x),(\frac{π}{4},5)
tangent of f(x)= 2/x ,(-4,-1/2)
tangent\:f(x)=\frac{2}{x},(-4,-\frac{1}{2})
derivative of x^2(x+3^4)
\frac{d}{dx}(x^{2}(x+3)^{4})
sum from n=1 to infinity of (5^n)/(6^nn)
\sum\:_{n=1}^{\infty\:}\frac{5^{n}}{6^{n}n}
xy^'+y=3xy
xy^{\prime\:}+y=3xy
integral of (x^2+7x-3)sin(2x)
\int\:(x^{2}+7x-3)\sin(2x)dx
integral of 3/(x(x^2+1))
\int\:\frac{3}{x(x^{2}+1)}dx
derivative of |(-3^x|)
\frac{d}{dx}(\left|(-3)^{x}\right|)
y^'x^2+yx^2=xy^5
y^{\prime\:}x^{2}+yx^{2}=xy^{5}
derivative of f(x)= 1/2
derivative\:f(x)=\frac{1}{2}
derivative of (2x^2-1)/(x+1)
derivative\:\frac{2x^{2}-1}{x+1}
derivative of t^3
derivative\:t^{3}
derivative of f(x)=20x+(420)/x
derivative\:f(x)=20x+\frac{420}{x}
derivative of f(x)=2x^2+1
derivative\:f(x)=2x^{2}+1
integral of 1/((x-3)sqrt(x^2)-6x)
\int\:\frac{1}{(x-3)\sqrt{x^{2}}-6x}dx
integral of x^7ln(5x)
\int\:x^{7}\ln(5x)dx
integral of (x^4)/(x^3-1)
\int\:\frac{x^{4}}{x^{3}-1}dx
integral from-pi to pi of sin(nx)
\int\:_{-π}^{π}\sin(nx)dx
laplacetransform e^t(t+5)^3
laplacetransform\:e^{t}(t+5)^{3}
(\partial ^2)/(\partial {h)(w)\partial w}(w/({h)(w)(w)^2})
\frac{\partial\:^{2}}{\partial\:{h}(w)\partial\:w}(\frac{w}{{h}(w)(w)^{2}})
inverse oflaplace (5e^{-s})/(4s^2+36)
inverselaplace\:\frac{5e^{-s}}{4s^{2}+36}
derivative of-2cos(x/2)
derivative\:-2\cos(\frac{x}{2})
limit as x approaches infinity of arctan(4x)
\lim\:_{x\to\:\infty\:}(\arctan(4x))
tangent of f(x)=ln(3x+4),(2,ln(10))
tangent\:f(x)=\ln(3x+4),(2,\ln(10))
laplacetransform-5cos(3t)
laplacetransform\:-5\cos(3t)
derivative of f(t)=2t^3+t
derivative\:f(t)=2t^{3}+t
(\partial)/(\partial x)((xy)/(x+y))
\frac{\partial\:}{\partial\:x}(\frac{xy}{x+y})
derivative of f(x)=ln(6-x^2)
derivative\:f(x)=\ln(6-x^{2})
(\partial)/(\partial x)(xcos(y)-ysin(x))
\frac{\partial\:}{\partial\:x}(x\cos(y)-y\sin(x))
limit as x approaches 1 of ((5-5x))/(1-sqrt(x))
\lim\:_{x\to\:1}(\frac{(5-5x)}{1-\sqrt{x}})
x(dy)/(dx)-y=0,y(a)=b
x\frac{dy}{dx}-y=0,y(a)=b
y^'+2xy=x
y^{\prime\:}+2xy=x
integral of-xarctan(x)
\int\:-x\arctan(x)dx
1
..
165
166
167
168
169
..
1823