You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
d/(dy)(e^{x+y})
\frac{d}{dy}(e^{x+y})
f(x)= x/(3x-4ln(x))
f(x)=\frac{x}{3x-4\ln(x)}
limit as x approaches 2 of (x^2-9)/(x-3)
\lim\:_{x\to\:2}(\frac{x^{2}-9}{x-3})
tangent of p(θ)=sqrt(3θ)
tangent\:p(θ)=\sqrt{3θ}
xy^'=(y^2)/x+y
xy^{\prime\:}=\frac{y^{2}}{x}+y
y^'=1+(y/x)
y^{\prime\:}=1+(\frac{y}{x})
derivative of f(x)=sqrt(1+x^{256)}-1
derivative\:f(x)=\sqrt{1+x^{256}}-1
derivative of 2xsqrt(36-x^2)
\frac{d}{dx}(2x\sqrt{36-x^{2}})
(\partial)/(\partial y)(x^2y-x-xy^2+y)
\frac{\partial\:}{\partial\:y}(x^{2}y-x-xy^{2}+y)
derivative of 18^x
\frac{d}{dx}(18^{x})
(\partial)/(\partial x)(ln(x^3y+2z))
\frac{\partial\:}{\partial\:x}(\ln(x^{3}y+2z))
integral of sin^3(3x)cos(3x)
\int\:\sin^{3}(3x)\cos(3x)dx
limit as x approaches 0 of x^2tan(x)
\lim\:_{x\to\:0}(x^{2}\tan(x))
limit as x approaches 7 of ln(x-7)
\lim\:_{x\to\:7}(\ln(x-7))
taylor 1/(1+x^2),1
taylor\:\frac{1}{1+x^{2}},1
tangent of 4/(5x+1)
tangent\:\frac{4}{5x+1}
derivative of ln(1/(sqrt(1-x^2)))
\frac{d}{dx}(\ln(\frac{1}{\sqrt{1-x^{2}}}))
limit as x approaches-5-of 3
\lim\:_{x\to\:-5-}(3)
y^'=6-y
y^{\prime\:}=6-y
derivative of y=(3x^3+7)^2
derivative\:y=(3x^{3}+7)^{2}
integral of (x+2)^{-1}
\int\:(x+2)^{-1}dx
(dy)/(dx)=7x^2*1/(5y^2)
\frac{dy}{dx}=7x^{2}\cdot\:\frac{1}{5y^{2}}
derivative of-1/((1+x)^2)
derivative\:-\frac{1}{(1+x)^{2}}
derivative of 3x^2-x+12
\frac{d}{dx}(3x^{2}-x+12)
integral from-infinity to-1 of e^{-14t}
\int\:_{-\infty\:}^{-1}e^{-14t}dt
integral of 6x^2-5
\int\:6x^{2}-5dx
derivative of y= 7/x
derivative\:y=\frac{7}{x}
(\partial)/(\partial x)(1+x^4+y^3)
\frac{\partial\:}{\partial\:x}(1+x^{4}+y^{3})
limit as x approaches 2-of ((2)|x|)/x-x
\lim\:_{x\to\:2-}(\frac{(2)\left|x\right|}{x}-x)
derivative of ,x
\frac{d}{dx}(,x)
area y=3x+2,y=x^3
area\:y=3x+2,y=x^{3}
inverse oflaplace 8/(s^2+8s)
inverselaplace\:\frac{8}{s^{2}+8s}
area y=0,y=x^3+8,[-3,-1]
area\:y=0,y=x^{3}+8,[-3,-1]
limit as x approaches 2 of 3x^2+4x+10
\lim\:_{x\to\:2}(3x^{2}+4x+10)
x^'=2x
x^{\prime\:}=2x
(dy)/(dt)-y=2cos(kt),y(0)=7
\frac{dy}{dt}-y=2\cos(kt),y(0)=7
(dy)/(dx)=1+x^2+y^2+x^2y^2
\frac{dy}{dx}=1+x^{2}+y^{2}+x^{2}y^{2}
derivative of sqrt(x-2\sqrt{x-2)}
\frac{d}{dx}(\sqrt{x-2\sqrt{x-2}})
derivative of (1+x^{1/2})
\frac{d}{dx}((1+x)^{\frac{1}{2}})
derivative of x^2-x-ln(x)
\frac{d}{dx}(x^{2}-x-\ln(x))
integral from-1 to 2 of (8-x^2)
\int\:_{-1}^{2}(8-x^{2})dx
derivative of 3cos(4x)
\frac{d}{dx}(3\cos(4x))
(\partial)/(\partial t)(4e^{sin(x+3ct)})
\frac{\partial\:}{\partial\:t}(4e^{\sin(x+3ct)})
limit as x approaches-5 of 2/((x+5)^4)
\lim\:_{x\to\:-5}(\frac{2}{(x+5)^{4}})
integral of 1024sin^4(x)cos^4(x)
\int\:1024\sin^{4}(x)\cos^{4}(x)dx
(\partial)/(\partial z)(e^{xyz^2+z})
\frac{\partial\:}{\partial\:z}(e^{xyz^{2}+z})
(\partial)/(\partial x)(4x^2+4y^3)
\frac{\partial\:}{\partial\:x}(4x^{2}+4y^{3})
integral of (3x^2+4)sqrt(x-1)
\int\:(3x^{2}+4)\sqrt{x-1}dx
integral from 4 to 7 of (x-5)^2
\int\:_{4}^{7}(x-5)^{2}dx
y^'+y=e^x,y(0)=6
y^{\prime\:}+y=e^{x},y(0)=6
(\partial)/(\partial x)(x/(x^5-y^5))
\frac{\partial\:}{\partial\:x}(\frac{x}{x^{5}-y^{5}})
integral of sin(x)csc(x)
\int\:\sin(x)\csc(x)dx
f(x)=e^{2x^2}
f(x)=e^{2x^{2}}
integral of sin^2(3x)cos^3(3x)
\int\:\sin^{2}(3x)\cos^{3}(3x)dx
limit as x approaches 0 of 5-x^2
\lim\:_{x\to\:0}(5-x^{2})
integral from 0 to 1 of x/(sqrt(1+x))
\int\:_{0}^{1}\frac{x}{\sqrt{1+x}}dx
d/(dt)(e^{3t})
\frac{d}{dt}(e^{3t})
integral of x(2x^2+1)^{3/2}
\int\:x(2x^{2}+1)^{\frac{3}{2}}dx
(\partial)/(\partial x)(x^2*cos(xy))
\frac{\partial\:}{\partial\:x}(x^{2}\cdot\:\cos(xy))
area y=10x^2,y^2= 1/10 x
area\:y=10x^{2},y^{2}=\frac{1}{10}x
limit as x approaches 3-of 1/((x-3)^2)
\lim\:_{x\to\:3-}(\frac{1}{(x-3)^{2}})
integral of 1/(2xsqrt(16x^2-8))
\int\:\frac{1}{2x\sqrt{16x^{2}-8}}dx
integral of 4^{3x}
\int\:4^{3x}dx
f(t)=t^3-2t^2+5t+4
f(t)=t^{3}-2t^{2}+5t+4
tangent of f(x)=(e^{-x})/(x+1),\at x=1
tangent\:f(x)=\frac{e^{-x}}{x+1},\at\:x=1
derivative of x/((1-x))
\frac{d}{dx}(\frac{x}{(1-x)})
sum from n=1 to infinity of ln(1+2/n)
\sum\:_{n=1}^{\infty\:}\ln(1+\frac{2}{n})
derivative of y=(2x)/(5-cot(x))
derivative\:y=\frac{2x}{5-\cot(x)}
(\partial)/(\partial y)(4x^2+3y^4)
\frac{\partial\:}{\partial\:y}(4x^{2}+3y^{4})
integral of cot^2(3x)
\int\:\cot^{2}(3x)dx
integral of (1+sqrt(x))^3
\int\:(1+\sqrt{x})^{3}dx
derivative of sqrt((x^3-1/(x^3+1)))
\frac{d}{dx}(\sqrt{\frac{x^{3}-1}{x^{3}+1}})
f(x)=(xcos(x)+pi)/(x-pi)
f(x)=\frac{x\cos(x)+π}{x-π}
derivative of (1+3/x ^x)
\frac{d}{dx}((1+\frac{3}{x})^{x})
(\partial)/(\partial x)((ln(x))^2)
\frac{\partial\:}{\partial\:x}((\ln(x))^{2})
integral of (x^3+x^2-x^5)/(x^6)
\int\:\frac{x^{3}+x^{2}-x^{5}}{x^{6}}dx
derivative of 1/4 (x^4+8)
\frac{d}{dx}(\frac{1}{4}(x^{4}+8))
derivative of g(x)=3x^4-140x^3
derivative\:g(x)=3x^{4}-140x^{3}
integral of 1/t
\int\:\frac{1}{t}dt
(\partial)/(\partial x)(-x)
\frac{\partial\:}{\partial\:x}(-x)
derivative of sqrt(r)
derivative\:\sqrt{r}
derivative of-1/2 tan(x)
\frac{d}{dx}(-\frac{1}{2}\tan(x))
taylor x^{3/2}
taylor\:x^{\frac{3}{2}}
limit as x approaches 7 of 2-sqrt(x-3)
\lim\:_{x\to\:7}(2-\sqrt{x-3})
integral of e^xsqrt(39+e^x)
\int\:e^{x}\sqrt{39+e^{x}}dx
tangent of f(x)=sqrt(x^3+3),(1,2)
tangent\:f(x)=\sqrt{x^{3}+3},(1,2)
integral of-3x
\int\:-3xdx
integral of 1/(2x^3+x)
\int\:\frac{1}{2x^{3}+x}dx
(\partial)/(\partial x)((0.5x^2+0.5y^2)^{1/2})
\frac{\partial\:}{\partial\:x}((0.5x^{2}+0.5y^{2})^{\frac{1}{2}})
integral from 0 to pi/2 of cos^5(1)
\int\:_{0}^{\frac{π}{2}}\cos^{5}(1)dx
y^{''}-4y^'+4y=t^{-6}e^{2t}
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=t^{-6}e^{2t}
(\partial)/(\partial y)(xe^{x^2y})
\frac{\partial\:}{\partial\:y}(xe^{x^{2}y})
y^{''}-4y^'+2y=0,y(0)=0,y^'(0)=5
y^{\prime\:\prime\:}-4y^{\prime\:}+2y=0,y(0)=0,y^{\prime\:}(0)=5
y^{''}-y=e^t
y^{\prime\:\prime\:}-y=e^{t}
f^'(x)=((5x+1))/(5x)
f^{\prime\:}(x)=\frac{(5x+1)}{5x}
integral from 0 to 1 of 2x-x^2
\int\:_{0}^{1}2x-x^{2}dx
y^'+6xy^2=0
y^{\prime\:}+6xy^{2}=0
derivative of (1000/x)
\frac{d}{dx}(\frac{1000}{x})
(\partial)/(\partial x)(5x(3+y)^{-1})
\frac{\partial\:}{\partial\:x}(5x(3+y)^{-1})
(d^2)/(dx^2)(7cos(3x))
\frac{d^{2}}{dx^{2}}(7\cos(3x))
1
..
238
239
240
241
242
..
1823