You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral from 1 to 2 of 18x^24^{x^3}
\int\:_{1}^{2}18x^{2}4^{x^{3}}dx
integral of (x^2)/(sqrt(x+1))
\int\:\frac{x^{2}}{\sqrt{x+1}}dx
limit as x approaches 0-of 1+e^{1/x}
\lim\:_{x\to\:0-}(1+e^{\frac{1}{x}})
laplacetransform 3t^2+15t+15
laplacetransform\:3t^{2}+15t+15
slope of y=(5x^2-1)^{-3}
slope\:y=(5x^{2}-1)^{-3}
integral from-infinity to 0 of xe^{8x}
\int\:_{-\infty\:}^{0}xe^{8x}dx
derivative of 2x^2-4x
derivative\:2x^{2}-4x
(\partial)/(\partial z)(-z)
\frac{\partial\:}{\partial\:z}(-z)
integral of 1/((x-2)(x-3))
\int\:\frac{1}{(x-2)(x-3)}dx
integral from-3 to 3 of (18)/(x^2-6x-72)
\int\:_{-3}^{3}\frac{18}{x^{2}-6x-72}dx
(\partial)/(\partial y)((2x)/((2x+3y)^2))
\frac{\partial\:}{\partial\:y}(\frac{2x}{(2x+3y)^{2}})
derivative of f(x)=e^t
derivative\:f(x)=e^{t}
tangent of y=sqrt(2x+1),(4,3)
tangent\:y=\sqrt{2x+1},(4,3)
integral of (x^2)/(e^{x/3)}
\int\:\frac{x^{2}}{e^{\frac{x}{3}}}dx
laplacetransform 5*t
laplacetransform\:5\cdot\:t
integral of 1/(x^2sqrt(x^2+25))
\int\:\frac{1}{x^{2}\sqrt{x^{2}+25}}dx
(\partial)/(\partial y)(sqrt(x/y))
\frac{\partial\:}{\partial\:y}(\sqrt{\frac{x}{y}})
derivative of (4083)/(1+6.22e^{-0.32x)}
derivative\:\frac{4083}{1+6.22e^{-0.32x}}
derivative of f(x)= 4/3 pir^3
derivative\:f(x)=\frac{4}{3}πr^{3}
integral of 24x^2(6-5x^3)^7
\int\:24x^{2}(6-5x^{3})^{7}dx
tangent of f(x)= x/(sqrt(9+x^2)),\at x=0
tangent\:f(x)=\frac{x}{\sqrt{9+x^{2}}},\at\:x=0
y^{''}+2y^'+2y=sin(5t)
y^{\prime\:\prime\:}+2y^{\prime\:}+2y=\sin(5t)
x^2(dy)/(dx)-2xy=3y^4,y(1)= 1/2
x^{2}\frac{dy}{dx}-2xy=3y^{4},y(1)=\frac{1}{2}
integral of ln(8x)
\int\:\ln(8x)dx
derivative of sin(5x-3)
derivative\:\sin(5x-3)
integral of 9x^2\sqrt[4]{7+4x^3}
\int\:9x^{2}\sqrt[4]{7+4x^{3}}dx
(\partial)/(\partial x)(ysin(y/x))
\frac{\partial\:}{\partial\:x}(y\sin(\frac{y}{x}))
limit as x approaches-4 of 5x+2
\lim\:_{x\to\:-4}(5x+2)
limit as x approaches-2 of ((3))/((x+2))
\lim\:_{x\to\:-2}(\frac{(3)}{(x+2)})
integral from 0 to 6 of pi/4 (36-y^2)
\int\:_{0}^{6}\frac{π}{4}(36-y^{2})dy
integral from 0 to 1 of 34.6e^{-0.06t}
\int\:_{0}^{1}34.6e^{-0.06t}dt
integral from 0 to 0.15 of x
\int\:_{0}^{0.15}xdx
limit as x approaches 0 of x^9cos(4/x)
\lim\:_{x\to\:0}(x^{9}\cos(\frac{4}{x}))
integral of 1/(xsqrt(49x^4-4))
\int\:\frac{1}{x\sqrt{49x^{4}-4}}dx
y^{''}-y^'-2y=te^{2t}
y^{\prime\:\prime\:}-y^{\prime\:}-2y=te^{2t}
derivative of-1/9 (x^{-9}-x^{18})
derivative\:-\frac{1}{9}(x^{-9}-x^{18})
derivative of 3sqrt(x)+8
\frac{d}{dx}(3\sqrt{x}+8)
t((dy)/(dt))=2te^t-y+6t^2
t(\frac{dy}{dt})=2te^{t}-y+6t^{2}
integral from 0 to 2pi of sin^2(t)
\int\:_{0}^{2π}\sin^{2}(t)dt
(\partial)/(\partial x)(25x^{(3/4)}y^{1/4})
\frac{\partial\:}{\partial\:x}(25x^{(\frac{3}{4})}y^{\frac{1}{4}})
y^'+(2(y-1))/x =0
y^{\prime\:}+\frac{2(y-1)}{x}=0
integral from 0 to 1 of sqrt(e^{2x)}
\int\:_{0}^{1}\sqrt{e^{2x}}dx
area 15-x^2,x^2-3
area\:15-x^{2},x^{2}-3
sum from n=1 to infinity of 2e^{-9n}
\sum\:_{n=1}^{\infty\:}2e^{-9n}
integral of te^{8t}
\int\:te^{8t}dt
derivative of f(x)=5x^{-3/5}
derivative\:f(x)=5x^{-\frac{3}{5}}
tangent of y=x^3-7x^2+8x+1
tangent\:y=x^{3}-7x^{2}+8x+1
2y^{''}+y^'-4y=0,y(0)=0,y^'(0)=1
2y^{\prime\:\prime\:}+y^{\prime\:}-4y=0,y(0)=0,y^{\prime\:}(0)=1
(\partial)/(\partial y)(x*e^{x*y})
\frac{\partial\:}{\partial\:y}(x\cdot\:e^{x\cdot\:y})
(\partial)/(\partial x)(-x/((x^2+y^2)))
\frac{\partial\:}{\partial\:x}(-\frac{x}{(x^{2}+y^{2})})
y^{''}-2y^'+y=8e^x
y^{\prime\:\prime\:}-2y^{\prime\:}+y=8e^{x}
limit as x approaches 0+of (ln(x))^2
\lim\:_{x\to\:0+}((\ln(x))^{2})
derivative of sec^2(x)+tan^2(x)
derivative\:\sec^{2}(x)+\tan^{2}(x)
tangent of f(x)=15x-1.86x^2,\at x=a
tangent\:f(x)=15x-1.86x^{2},\at\:x=a
derivative of 7^{x^2}
\frac{d}{dx}(7^{x^{2}})
integral of-3x^2-20x+2000
\int\:-3x^{2}-20x+2000dx
(1+x^2)(dy)/(dx)-(4x^3y)/(1-x^2)=1
(1+x^{2})\frac{dy}{dx}-\frac{4x^{3}y}{1-x^{2}}=1
integral of 3x^2+8x-9
\int\:3x^{2}+8x-9dx
(\partial)/(\partial x)(ln(t+2cx))
\frac{\partial\:}{\partial\:x}(\ln(t+2cx))
derivative of f(x)=ax^b+de^{-cx}
derivative\:f(x)=ax^{b}+de^{-cx}
integral of (4^x-sec^2(x))
\int\:(4^{x}-\sec^{2}(x))dx
integral of 1 (e^{-x}y)
\int\:\frac{d}{1}(e^{-x}y)dx
(dy)/(dx)=(x+y^2)/(2y),y(0)=1
\frac{dy}{dx}=\frac{x+y^{2}}{2y},y(0)=1
integral of (x^5)/(x^6-7)
\int\:\frac{x^{5}}{x^{6}-7}dx
limit as θ approaches 0 of 1/11
\lim\:_{θ\to\:0}(\frac{1}{11})
laplacetransform sin^2(x)
laplacetransform\:\sin^{2}(x)
derivative of (x+2sqrt(x)e^x)
\frac{d}{dx}((x+2\sqrt{x})e^{x})
derivative of (sin(x)/(2x))
\frac{d}{dx}(\frac{\sin(x)}{2x})
integral from-3 to 3 of sqrt(9-x^2)
\int\:_{-3}^{3}\sqrt{9-x^{2}}dx
integral from-2 to 2 of (x^2-4)^2
\int\:_{-2}^{2}(x^{2}-4)^{2}dx
integral of (e^{2x}*,x)
\int\:(e^{2x}\cdot\:,x)dx
derivative of (8*sqrt(x))/(x^2+p)
derivative\:\frac{8\cdot\:\sqrt{x}}{x^{2}+p}
integral of e^x*e^x
\int\:e^{x}\cdot\:e^{x}dx
sum from n=1 to infinity of 4/(5^n)
\sum\:_{n=1}^{\infty\:}\frac{4}{5^{n}}
derivative of 6x+8/3
derivative\:6x+\frac{8}{3}
integral of (ln^2(5))/(2x)
\int\:\frac{\ln^{2}(5)}{2x}dx
derivative of-3x^2cos(3x)
derivative\:-3x^{2}\cos(3x)
integral of ((ax)^3+e^{-bx})
\int\:((ax)^{3}+e^{-bx})dx
integral from 0 to 2 of x^3(7-x^2)^{1/2}
\int\:_{0}^{2}x^{3}(7-x^{2})^{\frac{1}{2}}dx
integral from 0 to 4 of (x^2-4x+3)
\int\:_{0}^{4}(x^{2}-4x+3)dx
4t(dy)/(dt)-5y=sqrt(t)
4t\frac{dy}{dt}-5y=\sqrt{t}
integral of-2*3^{6x}
\int\:-2\cdot\:3^{6x}dx
derivative of y=cot^2(x)
derivative\:y=\cot^{2}(x)
(\partial)/(\partial x)(sqrt(x^2+y^2)-z)
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}+y^{2}}-z)
limit as x approaches 3 of pi
\lim\:_{x\to\:3}(π)
xy^'+2y=5sqrt(x)
xy^{\prime\:}+2y=5\sqrt{x}
(\partial)/(\partial x)(t/(x+1))
\frac{\partial\:}{\partial\:x}(\frac{t}{x+1})
integral from-2pi to pi of sin^2(x)
\int\:_{-2π}^{π}\sin^{2}(x)dx
limit as x approaches 3 of (ln(x)-ln(3))/(x-3)
\lim\:_{x\to\:3}(\frac{\ln(x)-\ln(3)}{x-3})
(\partial)/(\partial x)(z^3x)
\frac{\partial\:}{\partial\:x}(z^{3}x)
integral of 5sec(x+3)tan(x+3)
\int\:5\sec(x+3)\tan(x+3)dx
xy^'+3y=4x,y(3)=6
xy^{\prime\:}+3y=4x,y(3)=6
(\partial)/(\partial x)(x^3-6xy+y^3)
\frac{\partial\:}{\partial\:x}(x^{3}-6xy+y^{3})
(\partial)/(\partial z)(z^3-x^2y)
\frac{\partial\:}{\partial\:z}(z^{3}-x^{2}y)
y^'=(2t)/(y+t^2y)
y^{\prime\:}=\frac{2t}{y+t^{2}y}
limit as n approaches infinity of 1/(n!)
\lim\:_{n\to\:\infty\:}(\frac{1}{n!})
limit as x approaches 0 of 1/(x^2(x+8))
\lim\:_{x\to\:0}(\frac{1}{x^{2}(x+8)})
y^{''}+4y=sin(2x)
y^{\prime\:\prime\:}+4y=\sin(2x)
integral from 0 to 8 of \sqrt[3]{x}
\int\:_{0}^{8}\sqrt[3]{x}dx
(dy)/(dx)+4y^2=0
\frac{dy}{dx}+4y^{2}=0
1
..
269
270
271
272
273
..
1823