You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
tangent of f(x)= 6/x ,\at x=5
tangent\:f(x)=\frac{6}{x},\at\:x=5
integral from 0 to 4 of te^{-t}
\int\:_{0}^{4}te^{-t}dt
inverse oflaplace (400)/(25s(s^2+200))
inverselaplace\:\frac{400}{25s(s^{2}+200)}
tangent of y=tan(x),(pi/4 ,1)
tangent\:y=\tan(x),(\frac{π}{4},1)
integral from 8 to 12 of 2/(x^3)
\int\:_{8}^{12}\frac{2}{x^{3}}dx
integral of (xln(x))^2
\int\:(x\ln(x))^{2}dx
limit as x approaches 0 of xsin((7pi)/x)
\lim\:_{x\to\:0}(x\sin(\frac{7π}{x}))
normal of 2x^2-3x+6,\at x=2
normal\:2x^{2}-3x+6,\at\:x=2
slope of x^2
slope\:x^{2}
y^'sqrt(y-x^2y)=-xy
y^{\prime\:}\sqrt{y-x^{2}y}=-xy
integral of tan^5(x)sec^3(x)
\int\:\tan^{5}(x)\sec^{3}(x)dx
(\partial)/(\partial x)(sqrt(x^2))
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}})
integral of x^4-8x^3+26x^2-40x+25
\int\:x^{4}-8x^{3}+26x^{2}-40x+25dx
limit as x approaches 7 of (x-7)/(x-7)
\lim\:_{x\to\:7}(\frac{x-7}{x-7})
limit as x approaches 0.5+of 3x
\lim\:_{x\to\:0.5+}(3x)
derivative of (3x^2+3x-2(2x-1)(-2x))
\frac{d}{dx}((3x^{2}+3x-2)(2x-1)(-2x))
limit as x approaches 1 of 1/((x-1)^2)
\lim\:_{x\to\:1}(\frac{1}{(x-1)^{2}})
integral from 0 to 7 of xe^{-2x}
\int\:_{0}^{7}xe^{-2x}dx
derivative of 64sin(2x)
\frac{d}{dx}(64\sin(2x))
derivative of sec^9(2^x)
\frac{d}{dx}(\sec^{9}(2^{x}))
integral of 7ln(\sqrt[3]{x})
\int\:7\ln(\sqrt[3]{x})dx
derivative of x*e^x+e^x
\frac{d}{dx}(x\cdot\:e^{x}+e^{x})
derivative of f(x)=e^{x^3ln(x)}
derivative\:f(x)=e^{x^{3}\ln(x)}
derivative of f(x)= 6/(3x+1)
derivative\:f(x)=\frac{6}{3x+1}
derivative of f(x)=8-2x
derivative\:f(x)=8-2x
(\partial)/(\partial y)(e^{4xy})
\frac{\partial\:}{\partial\:y}(e^{4xy})
sum from n=0 to infinity of (e/(10))^n
\sum\:_{n=0}^{\infty\:}(\frac{e}{10})^{n}
tangent of f(x)=x^2-1,\at x=-1
tangent\:f(x)=x^{2}-1,\at\:x=-1
inverse oflaplace 6/((s^2+9)^2)
inverselaplace\:\frac{6}{(s^{2}+9)^{2}}
derivative of 6e^x+8/(\sqrt[3]{x)}
derivative\:6e^{x}+\frac{8}{\sqrt[3]{x}}
(dy)/(dx)+(7/x)y=x+2
\frac{dy}{dx}+(\frac{7}{x})y=x+2
integral from-2 to 3 of 1/(1+9t^2)
\int\:_{-2}^{3}\frac{1}{1+9t^{2}}dt
area x=4y-y^2,x=y^2-7y
area\:x=4y-y^{2},x=y^{2}-7y
(\partial)/(\partial y)(6x^{2y})
\frac{\partial\:}{\partial\:y}(6x^{2y})
(x^2-1)y^'+2xy^2=0,y(0)=1
(x^{2}-1)y^{\prime\:}+2xy^{2}=0,y(0)=1
derivative of sin(x^2+e^x)
\frac{d}{dx}(\sin(x^{2}+e^{x}))
integral from 0 to pi of 3sin(x)
\int\:_{0}^{π}3\sin(x)dx
integral of (2x^2+x-4)/(x^3-x^2-2x)
\int\:\frac{2x^{2}+x-4}{x^{3}-x^{2}-2x}dx
(\partial)/(\partial x)(7sin(x)sin(y))
\frac{\partial\:}{\partial\:x}(7\sin(x)\sin(y))
derivative of 6/5
\frac{d}{dx}(\frac{6}{5})
d/(dt)(6arctan(t))
\frac{d}{dt}(6\arctan(t))
derivative of 24e^{-3x}
\frac{d}{dx}(24e^{-3x})
d/(dt)(e^{6tsin(2t)})
\frac{d}{dt}(e^{6t\sin(2t)})
integral from 0.5 to 4 of 2/x-1/8 x
\int\:_{0.5}^{4}\frac{2}{x}-\frac{1}{8}xdx
integral of x/(sqrt(x^2+1))
\int\:\frac{x}{\sqrt{x^{2}+1}}dx
(\partial}{\partial x}(\frac{(x+y))/2)
\frac{\partial\:}{\partial\:x}(\frac{(x+y)}{2})
integral of 1/(x(x^2-1)^{3/2)}
\int\:\frac{1}{x(x^{2}-1)^{\frac{3}{2}}}dx
integral from 7 to 14 of sqrt(196-x^2)
\int\:_{7}^{14}\sqrt{196-x^{2}}dx
simplify (2t)/(2+sqrt(t))
simplify\:\frac{2t}{2+\sqrt{t}}
integral of (x^3)/(sqrt(x^4+9))
\int\:\frac{x^{3}}{\sqrt{x^{4}+9}}dx
derivative of f(x)=9^x+e^x
derivative\:f(x)=9^{x}+e^{x}
taylor x^3,-2
taylor\:x^{3},-2
derivative of sqrt(tan(x))
derivative\:\sqrt{\tan(x)}
tangent of f(x)= 2/x ,(-8,-1/4)
tangent\:f(x)=\frac{2}{x},(-8,-\frac{1}{4})
(\partial)/(\partial y)((x-y)/(x+2y))
\frac{\partial\:}{\partial\:y}(\frac{x-y}{x+2y})
taylor cos(x)-x^2,1
taylor\:\cos(x)-x^{2},1
integral from 1 to 6 of (7ln(x))/(x^2)
\int\:_{1}^{6}\frac{7\ln(x)}{x^{2}}dx
limit as x approaches 8 of 2x-3
\lim\:_{x\to\:8}(2x-3)
integral from 1 to 3 of 4r^4ln(r)
\int\:_{1}^{3}4r^{4}\ln(r)dr
derivative of 2^{x^2+x}
derivative\:2^{x^{2}+x}
integral of |x-2|
\int\:\left|x-2\right|dx
tangent of x^4+7e^x
tangent\:x^{4}+7e^{x}
sum from n=0 to infinity of 9(5/12)^n
\sum\:_{n=0}^{\infty\:}9(\frac{5}{12})^{n}
derivative of (x^2+1^{1/2})
\frac{d}{dx}((x^{2}+1)^{\frac{1}{2}})
area y=sin(x),y=cos(x),x=(5pi)/4 ,x=2pi
area\:y=\sin(x),y=\cos(x),x=\frac{5π}{4},x=2π
tangent of y=(2x)/(x+2),(2,1)
tangent\:y=\frac{2x}{x+2},(2,1)
derivative of (4^x^9)
\frac{d}{dx}((4^{x})^{9})
limit as x approaches infinity+of 1/0
\lim\:_{x\to\:\infty\:+}(\frac{1}{0})
derivative of 3x^4+3x
derivative\:3x^{4}+3x
derivative of sqrt(7u)+sqrt(2u)
derivative\:\sqrt{7u}+\sqrt{2u}
integral from 0 to 1 of 2xe^x
\int\:_{0}^{1}2xe^{x}dx
integral of (cos^2(x))/(1+sin(x))
\int\:\frac{\cos^{2}(x)}{1+\sin(x)}dx
f(x)=ln(x+3)
f(x)=\ln(x+3)
(\partial)/(\partial x)(x^2(1+y)^3)
\frac{\partial\:}{\partial\:x}(x^{2}(1+y)^{3})
d/(dy)((e^y+e^{-y})/2)
\frac{d}{dy}(\frac{e^{y}+e^{-y}}{2})
derivative of 1/3 sin^3(x-sin(x)+1)
\frac{d}{dx}(\frac{1}{3}\sin^{3}(x)-\sin(x)+1)
limit as x approaches 4 of (x+4)/(x+7)
\lim\:_{x\to\:4}(\frac{x+4}{x+7})
derivative of 3x^{5x}
\frac{d}{dx}(3x^{5x})
taylor arctan(2x)
taylor\:\arctan(2x)
y^'=xy^3
y^{\prime\:}=xy^{3}
integral of 9-4x
\int\:9-4xdx
limit as x approaches-1 of x^3-x^2-5x+3
\lim\:_{x\to\:-1}(x^{3}-x^{2}-5x+3)
tangent of y=xsqrt(x)
tangent\:y=x\sqrt{x}
y^{''}-(2/x)y^'-(7/(x^2))y=0
y^{\prime\:\prime\:}-(\frac{2}{x})y^{\prime\:}-(\frac{7}{x^{2}})y=0
derivative of ln(sec(x^2))
\frac{d}{dx}(\ln(\sec(x^{2})))
integral of e^{x+y^2}
\int\:e^{x+y^{2}}dx
integral of ysqrt(10+10y-25y^2)
\int\:y\sqrt{10+10y-25y^{2}}dy
limit as x approaches 0 of (ln(1+3x))/x
\lim\:_{x\to\:0}(\frac{\ln(1+3x)}{x})
integral of-17sin^4(t)cos(t)
\int\:-17\sin^{4}(t)\cos(t)dt
derivative of (sqrt(x)/(3+x))
\frac{d}{dx}(\frac{\sqrt{x}}{3+x})
limit as x approaches 0 of 4sin(x)ln(x)
\lim\:_{x\to\:0}(4\sin(x)\ln(x))
integral from 0 to 18 of 1/30
\int\:_{0}^{18}\frac{1}{30}dx
derivative of (e^xdx)
\frac{d}{dx}((e^{x})dx)
d/(dt)(sin(9t))
\frac{d}{dt}(\sin(9t))
limit as x approaches-infinity of 2x+1
\lim\:_{x\to\:-\infty\:}(2x+1)
limit as x approaches 3+of 2/((x-3))
\lim\:_{x\to\:3+}(\frac{2}{(x-3)})
limit as x approaches 1+of 2-x^2
\lim\:_{x\to\:1+}(2-x^{2})
derivative of 100-x
\frac{d}{dx}(100-x)
(\partial)/(\partial x)((x+2)(y+1))
\frac{\partial\:}{\partial\:x}((x+2)(y+1))
derivative of e^{2x}(2cos(3x+3sin(3x)))
\frac{d}{dx}(e^{2x}(2\cos(3x)+3\sin(3x)))
1
..
270
271
272
273
274
..
1823