You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
inverse oflaplace (2s+3)/(s^2+6s+13)
inverselaplace\:\frac{2s+3}{s^{2}+6s+13}
1/5 (dy)/(dx)=(1/5)^2-1/5
\frac{1}{5}\frac{dy}{dx}=(\frac{1}{5})^{2}-\frac{1}{5}
inverse oflaplace (5x+5)/(x^2-4)
inverselaplace\:\frac{5x+5}{x^{2}-4}
(\partial)/(\partial x)(12xy^2)
\frac{\partial\:}{\partial\:x}(12xy^{2})
integral from 0 to 1 of ((x^2+1)e^{-x})
\int\:_{0}^{1}((x^{2}+1)e^{-x})dx
derivative of (x^2-1(-3x^3+2x))
\frac{d}{dx}((x^{2}-1)(-3x^{3}+2x))
(\partial)/(\partial x)(2x-2y)
\frac{\partial\:}{\partial\:x}(2x-2y)
limit as x approaches-1 of h(x)
\lim\:_{x\to\:-1}(h(x))
tangent of f(x)= 8/(7-x)
tangent\:f(x)=\frac{8}{7-x}
inverse oflaplace {1/(s^2)-(48)/(s^5)}
inverselaplace\:\left\{\frac{1}{s^{2}}-\frac{48}{s^{5}}\right\}
d/(dθ)(3cos(θ)-4sin(θ))
\frac{d}{dθ}(3\cos(θ)-4\sin(θ))
area y=x^4,x=y^7,x=0,x=1
area\:y=x^{4},x=y^{7},x=0,x=1
integral from 0 to 1 of arctan(x)
\int\:_{0}^{1}\arctan(x)dx
(\partial)/(\partial x)((x-2)^2+(y-2)^2)
\frac{\partial\:}{\partial\:x}((x-2)^{2}+(y-2)^{2})
(\partial)/(\partial s)(r+s)
\frac{\partial\:}{\partial\:s}(r+s)
integral of (tan(x))/(sec(x))
\int\:\frac{\tan(x)}{\sec(x)}dx
integral of (2x)/(x^2+1)
\int\:\frac{2x}{x^{2}+1}dx
integral of x/(2x+3)
\int\:\frac{x}{2x+3}dx
derivative of f(x)= x/(7x^2+1)
derivative\:f(x)=\frac{x}{7x^{2}+1}
(dy)/(dt)=-1/5 y
\frac{dy}{dt}=-\frac{1}{5}y
integral from pi to 5pi of x^2sin(x)
\int\:_{π}^{5π}x^{2}\sin(x)dx
taylor 3+4x^2-5x^3
taylor\:3+4x^{2}-5x^{3}
integral of 1/(1+x/2)
\int\:\frac{1}{1+\frac{x}{2}}dx
sum from n=1 to infinity of (3^n)/(4^{n+1)}
\sum\:_{n=1}^{\infty\:}\frac{3^{n}}{4^{n+1}}
limit as x approaches 1 of 4sqrt(x-1)
\lim\:_{x\to\:1}(4\sqrt{x-1})
derivative of (150000)/((4t+75)^2)
derivative\:\frac{150000}{(4t+75)^{2}}
derivative of g(x)= 3/(x^3)
derivative\:g(x)=\frac{3}{x^{3}}
integral of 1/(xsqrt(1+ln(x^2)))
\int\:\frac{1}{x\sqrt{1+\ln(x^{2})}}dx
(\partial)/(\partial x)(sqrt(25-x^2-5y))
\frac{\partial\:}{\partial\:x}(\sqrt{25-x^{2}-5y})
sum from n=0 to infinity of 5/(pi^n)
\sum\:_{n=0}^{\infty\:}\frac{5}{π^{n}}
derivative of 4+2x-3x^2-5x^3-8x^4+9x^5
\frac{d}{dx}(4+2x-3x^{2}-5x^{3}-8x^{4}+9x^{5})
integral from 0 to 2pi of sqrt(20+16t^2)
\int\:_{0}^{2π}\sqrt{20+16t^{2}}dt
limit as x approaches-2 of (x+1)^4(2x^2)
\lim\:_{x\to\:-2}((x+1)^{4}(2x^{2}))
derivative of (x^2+9)/(x+3)
derivative\:\frac{x^{2}+9}{x+3}
integral from 0 to 2 of 1/(sqrt(4+x^2))
\int\:_{0}^{2}\frac{1}{\sqrt{4+x^{2}}}dx
tangent of f(x)= 2/(x+1),\at x=1
tangent\:f(x)=\frac{2}{x+1},\at\:x=1
xy^'-2y=11x^2
xy^{\prime\:}-2y=11x^{2}
derivative of 2^{e^x}
\frac{d}{dx}(2^{e^{x}})
(dy)/(dx)=(-2y)/(x-2)
\frac{dy}{dx}=\frac{-2y}{x-2}
(\partial)/(\partial x)(sqrt(3x^2+y^2))
\frac{\partial\:}{\partial\:x}(\sqrt{3x^{2}+y^{2}})
integral from-1 to 1 of 3x^2sqrt(x^3+2)
\int\:_{-1}^{1}3x^{2}\sqrt{x^{3}+2}dx
limit as x approaches-1 of t^2-x^2
\lim\:_{x\to\:-1}(t^{2}-x^{2})
integral of ((x^2-3x-7))/((2x+3)(x+1)^2)
\int\:\frac{(x^{2}-3x-7)}{(2x+3)(x+1)^{2}}dx
derivative of 3x^4-6x^3+1
derivative\:3x^{4}-6x^{3}+1
derivative of f(x)=(x^2+8)/(9x-2)
derivative\:f(x)=\frac{x^{2}+8}{9x-2}
derivative of x^{10}e^x
derivative\:x^{10}e^{x}
derivative of e^{x/2}
derivative\:e^{\frac{x}{2}}
derivative of ux
\frac{d}{dx}(ux)
integral from 0 to 9 of |sqrt(5x+6)-x|
\int\:_{0}^{9}\left|\sqrt{5x+6}-x\right|dx
slope of (0,3),(1,0)
slope\:(0,3),(1,0)
integral of (x^2)/((x-6)(x-7)^2)
\int\:\frac{x^{2}}{(x-6)(x-7)^{2}}dx
laplacetransform te^{7t}
laplacetransform\:te^{7t}
(dy)/(dt)=3y+y^5,y(0)=1
\frac{dy}{dt}=3y+y^{5},y(0)=1
integral of xsec(3x^2+1)
\int\:x\sec(3x^{2}+1)dx
6(dy)/(dx)-2y=xy^4,y(0)=-2
6\frac{dy}{dx}-2y=xy^{4},y(0)=-2
((2y)/x+2x)+(2ln(x)-3)((dy)/(dx))=0
(\frac{2y}{x}+2x)+(2\ln(x)-3)(\frac{dy}{dx})=0
derivative of 1/(4^x)
derivative\:\frac{1}{4^{x}}
integral from 1/2 to 1 of 4/9 x(5-x^2)
\int\:_{\frac{1}{2}}^{1}\frac{4}{9}x(5-x^{2})dx
derivative of (t-sqrt(t))/(t^{1/7)}
derivative\:\frac{t-\sqrt{t}}{t^{\frac{1}{7}}}
d/(d{x)}({x}sin({y}-{z}))
\frac{d}{d{x}}({x}\sin({y}-{z}))
derivative of y=((3x^2)/(2x+4))^3
derivative\:y=(\frac{3x^{2}}{2x+4})^{3}
inverse oflaplace 5/(s(s^2+5^2))
inverselaplace\:\frac{5}{s(s^{2}+5^{2})}
laplacetransform f(t)=2(1-e^{-5t})
laplacetransform\:f(t)=2(1-e^{-5t})
derivative of ln^2(2*2^x)
\frac{d}{dx}(\ln^{2}(2)\cdot\:2^{x})
derivative of y=ln(x-4)
derivative\:y=\ln(x-4)
laplacetransform-5e^{2t}
laplacetransform\:-5e^{2t}
sum from n=1 to infinity of n!(x-1)^n
\sum\:_{n=1}^{\infty\:}n!(x-1)^{n}
integral from 1 to 4 of x^2-3x
\int\:_{1}^{4}x^{2}-3xdx
integral from 0 to 4 of x/(x^2-1)
\int\:_{0}^{4}\frac{x}{x^{2}-1}dx
(\partial)/(\partial x)(sqrt(3x+2y-3))
\frac{\partial\:}{\partial\:x}(\sqrt{3x+2y-3})
area y=x^2,y=3-x,(0,1.3)
area\:y=x^{2},y=3-x,(0,1.3)
derivative of f(x)=3x^2e^x+e^x(x^3+1)
derivative\:f(x)=3x^{2}e^{x}+e^{x}(x^{3}+1)
y^'=18.2-0.7y
y^{\prime\:}=18.2-0.7y
limit as x approaches 4 of x
\lim\:_{x\to\:4}(x)
inverse oflaplace (s+3)/((s+3)^2+4)
inverselaplace\:\frac{s+3}{(s+3)^{2}+4}
derivative of 1/2 cos(x/2)
\frac{d}{dx}(\frac{1}{2}\cos(\frac{x}{2}))
y^'=y^2+y
y^{\prime\:}=y^{2}+y
derivative of (3x+2^6)
\frac{d}{dx}((3x+2)^{6})
integral from-7 to 7 of 1/x
\int\:_{-7}^{7}\frac{1}{x}dx
tangent of y= x/(sqrt(9+x^2)),(0,0)
tangent\:y=\frac{x}{\sqrt{9+x^{2}}},(0,0)
integral of sqrt(3+x)*(x+1)^2
\int\:\sqrt{3+x}\cdot\:(x+1)^{2}dx
(\partial)/(\partial x)(x^{1/2})
\frac{\partial\:}{\partial\:x}(x^{\frac{1}{2}})
derivative of (-8x/(x^2+1))
\frac{d}{dx}(\frac{-8x}{x^{2}+1})
area y=3x^2ln(x),y=12ln(x)
area\:y=3x^{2}\ln(x),y=12\ln(x)
integral of (x^2+y^2)
\int\:(x^{2}+y^{2})dx
integral of sqrt(4)-x^2
\int\:\sqrt{4}-x^{2}dx
integral of xe^{11x}
\int\:xe^{11x}dx
area 3cos(pix),12x^2-3,-0.5,0.5
area\:3\cos(πx),12x^{2}-3,-0.5,0.5
integral of (x^2-y^2)/((x^2+y^2)^2)
\int\:\frac{x^{2}-y^{2}}{(x^{2}+y^{2})^{2}}dy
derivative of e^{xy^2}
derivative\:e^{xy^{2}}
integral of 1/(3^{2x)}
\int\:\frac{1}{3^{2x}}dx
derivative of-1/(2x^{3/2})
\frac{d}{dx}(-\frac{1}{2x^{\frac{3}{2}}})
limit as x approaches 0 of tan^x(2x)
\lim\:_{x\to\:0}(\tan^{x}(2x))
derivative of y=2x^2sqrt(25-x^2)
derivative\:y=2x^{2}\sqrt{25-x^{2}}
y^'=xy-y
y^{\prime\:}=xy-y
integral of (2x)/(x^2+2)
\int\:\frac{2x}{x^{2}+2}dx
2y^{''}+5y^'-3y=0,y(0)=3,y^'(0)=19
2y^{\prime\:\prime\:}+5y^{\prime\:}-3y=0,y(0)=3,y^{\prime\:}(0)=19
derivative of f(x)= 7/(8t^4)
derivative\:f(x)=\frac{7}{8t^{4}}
tangent of f(x)=2x^3-x^2+2,\at x=1
tangent\:f(x)=2x^{3}-x^{2}+2,\at\:x=1
derivative of ln(2-3x)
\frac{d}{dx}(\ln(2-3x))
1
..
293
294
295
296
297
..
1823