You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)((xy)/((x^2-y^2)^2))
\frac{\partial\:}{\partial\:x}(\frac{xy}{(x^{2}-y^{2})^{2}})
tangent of y=x^2+1,(-2,5)
tangent\:y=x^{2}+1,(-2,5)
taylor sqrt(x),\at 25
taylor\:\sqrt{x},\at\:25
derivative of x^4-2x^2+4
derivative\:x^{4}-2x^{2}+4
(\partial)/(\partial x)((5x-9y)/(5x+9y))
\frac{\partial\:}{\partial\:x}(\frac{5x-9y}{5x+9y})
integral of x^2ln(3x)
\int\:x^{2}\ln(3x)dx
integral from 0 to v of v
\int\:_{0}^{v}vdv
integral of-32t+18
\int\:-32t+18dt
integral from 0 to 3 of 1/(xsqrt(x))
\int\:_{0}^{3}\frac{1}{x\sqrt{x}}dx
limit as x approaches 0 of-sin(x)+x
\lim\:_{x\to\:0}(-\sin(x)+x)
derivative of f(x)=x(8-x)^3
derivative\:f(x)=x(8-x)^{3}
(x-9)y^'+y=x^2-1
(x-9)y^{\prime\:}+y=x^{2}-1
derivative of ((8x)/(8x+6))^{7x}
derivative\:(\frac{8x}{8x+6})^{7x}
derivative of y= 4/3 pir^6
derivative\:y=\frac{4}{3}πr^{6}
integral from 0 to 1 of pi(4x)^2
\int\:_{0}^{1}π(4x)^{2}dx
integral from 0 to 1 of e^{-x}+3x^2
\int\:_{0}^{1}e^{-x}+3x^{2}dx
limit as x approaches infinity+of 1/(x!)
\lim\:_{x\to\:\infty\:+}(\frac{1}{x!})
integral of cos^7(x)sin(x)
\int\:\cos^{7}(x)\sin(x)dx
derivative of 3x^{-3}(x^4-3x^3+10x-9)
derivative\:3x^{-3}(x^{4}-3x^{3}+10x-9)
integral of 1/(x^2+z^2)
\int\:\frac{1}{x^{2}+z^{2}}dx
integral of (9e^x)/(e^x-1)
\int\:\frac{9e^{x}}{e^{x}-1}dx
(\partial)/(\partial x)(x^4+5x^2y)
\frac{\partial\:}{\partial\:x}(x^{4}+5x^{2}y)
y^{''}-7y^'+10y=0
y^{\prime\:\prime\:}-7y^{\prime\:}+10y=0
integral of 4/(x(ln(x))^2)
\int\:\frac{4}{x(\ln(x))^{2}}dx
tangent of x^4-3x^2+9
tangent\:x^{4}-3x^{2}+9
integral of x^2e^{-x/2}
\int\:x^{2}e^{-\frac{x}{2}}dx
integral of (x+6)(x-5)
\int\:(x+6)(x-5)dx
derivative of sin(tan(cos(2pix^4)))
\frac{d}{dx}(\sin(\tan(\cos(2πx^{4}))))
limit as x approaches-infinity of xln(x)
\lim\:_{x\to\:-\infty\:}(x\ln(x))
derivative of x^2+x^2ln(x)
\frac{d}{dx}(x^{2}+x^{2}\ln(x))
(dy)/(dt)=t^4y
\frac{dy}{dt}=t^{4}y
taylor x^4,1
taylor\:x^{4},1
tangent of-(2x)/(x^2+1)
tangent\:-\frac{2x}{x^{2}+1}
integral from 0 to ln(2) of se^s
\int\:_{0}^{\ln(2)}se^{s}ds
(\partial)/(\partial x)(2/(2x+y))
\frac{\partial\:}{\partial\:x}(\frac{2}{2x+y})
limit as x approaches-2 of-x^2+4x-6
\lim\:_{x\to\:-2}(-x^{2}+4x-6)
tangent of f(x)=x^2+1,(-2,5)
tangent\:f(x)=x^{2}+1,(-2,5)
integral of x/((1+x^3))
\int\:\frac{x}{(1+x^{3})}dx
limit as x approaches 0+of sin(x)
\lim\:_{x\to\:0+}(\sin(x))
integral of (ax^3-bx^2-cx+
\int\:(ax^{3}-bx^{2}-cx+d)dx
integral from-2 to 4 of |x|
\int\:_{-2}^{4}\left|x\right|dx
(dy)/(dx)=xe^y
\frac{dy}{dx}=xe^{y}
derivative of f(x)=(2+x+8x^3)/(x^4)
derivative\:f(x)=\frac{2+x+8x^{3}}{x^{4}}
integral of y/(1+y^2)
\int\:\frac{y}{1+y^{2}}dy
(\partial)/(\partial x)(20sin(4x)cos(2y))
\frac{\partial\:}{\partial\:x}(20\sin(4x)\cos(2y))
limit as h approaches 0 of ((e^h-1))/h
\lim\:_{h\to\:0}(\frac{(e^{h}-1)}{h})
integral of x^4sin(9x)
\int\:x^{4}\sin(9x)dx
derivative of [((x-1))/((x+3))]^{1/3}
derivative\:[\frac{(x-1)}{(x+3)}]^{\frac{1}{3}}
integral of 1/(sqrt(-x^2+6x+7))
\int\:\frac{1}{\sqrt{-x^{2}+6x+7}}dx
integral of 5x^{-3}+4x^{-2}-3x^{-1}+4
\int\:5x^{-3}+4x^{-2}-3x^{-1}+4dx
integral from 0 to 1 of sqrt(1+(9x)/4)
\int\:_{0}^{1}\sqrt{1+\frac{9x}{4}}dx
cos(t)y^'+sin(t)y=2cos^3(t)sin(t)-1
\cos(t)y^{\prime\:}+\sin(t)y=2\cos^{3}(t)\sin(t)-1
derivative of c/x
derivative\:\frac{c}{x}
derivative of 2^{(x^2-3x+8)}
derivative\:2^{(x^{2}-3x+8)}
tangent of f(x)=sqrt(5+8x),\at x=0
tangent\:f(x)=\sqrt{5+8x},\at\:x=0
limit as x approaches infinity of x*1/x
\lim\:_{x\to\:\infty\:}(x\cdot\:\frac{1}{x})
inverse oflaplace 1/(120x)
inverselaplace\:\frac{1}{120x}
integral from-2 to 2 of f(x)
\int\:_{-2}^{2}f(x)dx
integral of x^2(3+4x^3)^9
\int\:x^{2}(3+4x^{3})^{9}dx
limit as x approaches o of f(x, 1/x)
\lim\:_{x\to\:o}(f(x,\frac{1}{x}))
limit as x approaches 5 of x-2
\lim\:_{x\to\:5}(x-2)
limit as x approaches 0 of (x^2)/(e^x)
\lim\:_{x\to\:0}(\frac{x^{2}}{e^{x}})
(dy)/(dx)=(3x^2-1)/(2y)
\frac{dy}{dx}=\frac{3x^{2}-1}{2y}
derivative of 1/2 csc(x/4)
\frac{d}{dx}(\frac{1}{2}\csc(\frac{x}{4}))
(dy)/(dx)=((x^2+3y^2))/(2xy)
\frac{dy}{dx}=\frac{(x^{2}+3y^{2})}{2xy}
derivative of ln(sqrt(x^2+1))+e^{-x^2}
derivative\:\ln(\sqrt{x^{2}+1})+e^{-x^{2}}
derivative of (100)/x
derivative\:\frac{100}{x}
integral of (x^2)/((x+1)^3)
\int\:\frac{x^{2}}{(x+1)^{3}}dx
laplacetransform 5y
laplacetransform\:5y
derivative of (dy/(dx))+y=7sin(x)
\frac{d}{dx}(\frac{dy}{dx})+y=7\sin(x)
integral of (0.8(3+ln(u))^3)/u
\int\:\frac{0.8(3+\ln(u))^{3}}{u}du
tangent of y=2x^3-8x,(2,0)
tangent\:y=2x^{3}-8x,(2,0)
integral of ((3x^3+2x)/x)
\int\:(\frac{3x^{3}+2x}{x})dx
area y=x+2,y=x^2
area\:y=x+2,y=x^{2}
derivative of (sqrt(25-x^2-y^2)/y)
\frac{d}{dx}(\frac{\sqrt{25-x^{2}-y^{2}}}{y})
limit as x approaches pi/2 of tan(x/2)
\lim\:_{x\to\:\frac{π}{2}}(\tan(\frac{x}{2}))
derivative of f(x(1x^2-1))
\frac{d}{dx}(f(x)(1x^{2}-1))
taylor tan(x)
taylor\:\tan(x)
(\partial)/(\partial x)(e^{8x-200})
\frac{\partial\:}{\partial\:x}(e^{8x-200})
d/(dz(t))(((x-1)z(t))/(2z(t)-4t+1))
\frac{d}{dz(t)}(\frac{(x-1)z(t)}{2z(t)-4t+1})
yy^'=t+ty
yy^{\prime\:}=t+ty
derivative of-xsin(x)
derivative\:-x\sin(x)
(x^4-y^2)dx(x^3-2xy)dy=0
(x^{4}-y^{2})dx(x^{3}-2xy)dy=0
integral of-56sin(7z-5)
\int\:-56\sin(7z-5)dz
derivative of \sqrt[3]{2x^2}
\frac{d}{dx}(\sqrt[3]{2x^{2}})
integral of 1/(x^5*sqrt(x^2-1))
\int\:\frac{1}{x^{5}\cdot\:\sqrt{x^{2}-1}}dx
(\partial)/(\partial x)(4xsqrt(y))
\frac{\partial\:}{\partial\:x}(4x\sqrt{y})
inverse oflaplace 3t^2+2t-2
inverselaplace\:3t^{2}+2t-2
derivative of (6x^2+6x+4)/(sqrt(x))
derivative\:\frac{6x^{2}+6x+4}{\sqrt{x}}
y^{''}-4y^'+4y=0,y(0)=-3,y^'(0)=1
y^{\prime\:\prime\:}-4y^{\prime\:}+4y=0,y(0)=-3,y^{\prime\:}(0)=1
limit as x approaches 3 of cos(pix)+6
\lim\:_{x\to\:3}(\cos(πx)+6)
integral of (4\sqrt[3]{x})/3
\int\:\frac{4\sqrt[3]{x}}{3}dx
(\partial)/(\partial x)(110e^{-0.1t})
\frac{\partial\:}{\partial\:x}(110e^{-0.1t})
derivative of 6x^2+6x
\frac{d}{dx}(6x^{2}+6x)
derivative of 2e^xsin(x)
\frac{d}{dx}(2e^{x}\sin(x))
maclaurin 1/((x^2-a^2))
maclaurin\:\frac{1}{(x^{2}-a^{2})}
(\partial)/(\partial v)(3yuxuv^3-2)
\frac{\partial\:}{\partial\:v}(3yuxuv^{3}-2)
integral of 5cos(sqrt(9x))
\int\:5\cos(\sqrt{9x})dx
(\partial)/(\partial z)(yze^x)
\frac{\partial\:}{\partial\:z}(yze^{x})
(\partial)/(\partial x)(xe^{-x^2-y^2-z^2})
\frac{\partial\:}{\partial\:x}(xe^{-x^{2}-y^{2}-z^{2}})
1
..
885
886
887
888
889
..
1823