You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
AI Chat
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of 4sin(2θ)
\int\:4\sin(2θ)dθ
integral from-2 to 2 of x^2-4
\int\:_{-2}^{2}x^{2}-4dx
derivative of 3sin^2(x+sec(2x))
\frac{d}{dx}(3\sin^{2}(x)+\sec(2x))
tangent of f(x)=sqrt(x)+1/x ,\at x=4
tangent\:f(x)=\sqrt{x}+\frac{1}{x},\at\:x=4
integral of (3t+5)cos(t/4)
\int\:(3t+5)\cos(\frac{t}{4})dt
f(x)=3x^{(2)}-5x-6
f(x)=3x^{(2)}-5x-6
derivative of sqrt(16x)
\frac{d}{dx}(\sqrt{16x})
d/(dy)(yln(y)-e^{-xy})
\frac{d}{dy}(y\ln(y)-e^{-xy})
integral of (2sin(1/(5x)))/(5x^2)
\int\:\frac{2\sin(\frac{1}{5x})}{5x^{2}}dx
area y=(64)/(16+x^2),y=1
area\:y=\frac{64}{16+x^{2}},y=1
integral of 2sec(4x)
\int\:2\sec(4x)dx
inverse oflaplace 1/(s+42)-1/((s+3)^4)
inverselaplace\:\frac{1}{s+42}-\frac{1}{(s+3)^{4}}
integral of-picos(1pi)t
\int\:-π\cos(1π)tdt
(\partial)/(\partial x)(-2e^{3x})
\frac{\partial\:}{\partial\:x}(-2e^{3x})
derivative of cos(ax)
\frac{d}{dx}(\cos(ax))
tangent of 11-x^2
tangent\:11-x^{2}
integral from 0 to 2 of 1/(1-x^2)
\int\:_{0}^{2}\frac{1}{1-x^{2}}dx
derivative of ln(sqrt((1+cos(x)/(1-cos(x)))))
\frac{d}{dx}(\ln(\sqrt{\frac{1+\cos(x)}{1-\cos(x)}}))
integral of 1/((x^2-4x-5))
\int\:\frac{1}{(x^{2}-4x-5)}dx
taylor x^4+2x,1
taylor\:x^{4}+2x,1
(12x+x^2+0.05x^3)^'
(12x+x^{2}+0.05x^{3})^{\prime\:}
integral from-1 to 1 of e^y-(y^2-2)
\int\:_{-1}^{1}e^{y}-(y^{2}-2)dy
sum from n=2 to infinity of 3/(4^n)
\sum\:_{n=2}^{\infty\:}\frac{3}{4^{n}}
(\partial)/(\partial x)(ln(1+x^2+y^2))
\frac{\partial\:}{\partial\:x}(\ln(1+x^{2}+y^{2}))
(\partial)/(\partial x)(13.12+0.6215x-11.37y^{0.16}+0.3965xy^{0.16})
\frac{\partial\:}{\partial\:x}(13.12+0.6215x-11.37y^{0.16}+0.3965xy^{0.16})
tangent of f(x)=sin(x)cos(x)
tangent\:f(x)=\sin(x)\cos(x)
integral of x/((x^2+1)(x^2+4x+4))
\int\:\frac{x}{(x^{2}+1)(x^{2}+4x+4)}dx
limit as x approaches 0 of 8xcsc(5x)
\lim\:_{x\to\:0}(8x\csc(5x))
11(t+1)(dy)/(dt)-8y=24t
11(t+1)\frac{dy}{dt}-8y=24t
y^'+e^xy=e^x
y^{\prime\:}+e^{x}y=e^{x}
d/(dt)(t-1/t)
\frac{d}{dt}(t-\frac{1}{t})
(dy)/(dx)=e^{y/x}+y/x
\frac{dy}{dx}=e^{\frac{y}{x}}+\frac{y}{x}
integral of x^3(9+x^4)^6
\int\:x^{3}(9+x^{4})^{6}dx
(\partial)/(\partial x)(4(y/x)^{1/2})
\frac{\partial\:}{\partial\:x}(4(\frac{y}{x})^{\frac{1}{2}})
area f(x)=2x^2+2,[-2,3]
area\:f(x)=2x^{2}+2,[-2,3]
integral of 1/(x^2sqrt(4+x^2))
\int\:\frac{1}{x^{2}\sqrt{4+x^{2}}}dx
integral of (e^x)/(e^{2x)-3e^x+2}
\int\:\frac{e^{x}}{e^{2x}-3e^{x}+2}dx
derivative of sqrt(tan^2(3x+1))
\frac{d}{dx}(\sqrt{\tan^{2}(3x)+1})
sum from n=7 to infinity of 1/(6n)
\sum\:_{n=7}^{\infty\:}\frac{1}{6n}
slope of y=x^2+5x,x=8
slope\:y=x^{2}+5x,x=8
integral of (3x^3)/(x^2+1)
\int\:\frac{3x^{3}}{x^{2}+1}dx
sum from n=0 to infinity of 1/(sqrt(n))
\sum\:_{n=0}^{\infty\:}\frac{1}{\sqrt{n}}
(\partial)/(\partial x)(x^{0.7}y^{0.3})
\frac{\partial\:}{\partial\:x}(x^{0.7}y^{0.3})
integral from 0 to 1 of 3e^{-2x}
\int\:_{0}^{1}3e^{-2x}dx
sum from n=1 to infinity of (7*n!)/(n^n)
\sum\:_{n=1}^{\infty\:}\frac{7\cdot\:n!}{n^{n}}
(\partial)/(\partial x)(-cos(4x))
\frac{\partial\:}{\partial\:x}(-\cos(4x))
limit as t approaches 0 of (tan(6t))/(sin(2t))
\lim\:_{t\to\:0}(\frac{\tan(6t)}{\sin(2t)})
integral of (ax+b)/(px+q)
\int\:\frac{ax+b}{px+q}dx
x((dy)/(dx))-y=x
x(\frac{dy}{dx})-y=x
integral from 0 to L of x/(x)
\int\:_{0}^{L}\frac{x}{d+x}dx
(\partial)/(\partial x)((2x+5y)e^y)
\frac{\partial\:}{\partial\:x}((2x+5y)e^{y})
(\partial)/(\partial x)(x+y-xy)
\frac{\partial\:}{\partial\:x}(x+y-xy)
integral from 0 to 8 of (x+1)^2
\int\:_{0}^{8}(x+1)^{2}dx
limit as x approaches 0 of (ln(1-6x))/x
\lim\:_{x\to\:0}(\frac{\ln(1-6x)}{x})
limit as x approaches-8 of (|x+8|)/(x+8)
\lim\:_{x\to\:-8}(\frac{\left|x+8\right|}{x+8})
derivative of-(4x)/y
derivative\:-\frac{4x}{y}
derivative of f(x)=sqrt(x)cos(x)
derivative\:f(x)=\sqrt{x}\cos(x)
integral from 1 to 2 of (e^{1/(x^5)})/(x^6)
\int\:_{1}^{2}\frac{e^{\frac{1}{x^{5}}}}{x^{6}}dx
limit as x approaches 2-of x-a
\lim\:_{x\to\:2-}(x-a)
integral of (9-z^2)(6-2z)
\int\:(9-z^{2})(6-2z)dz
integral of sin(2x)e^{-sx}
\int\:\sin(2x)e^{-sx}dx
integral from 4 to infinity of e^{-8x}
\int\:_{4}^{\infty\:}e^{-8x}dx
(2dy)/(dx)+10y=5
\frac{2dy}{dx}+10y=5
derivative of (e^x+e^{-x})/4
derivative\:\frac{e^{x}+e^{-x}}{4}
y^'+2y=xy^3
y^{\prime\:}+2y=xy^{3}
derivative of f(x)=9x+2
derivative\:f(x)=9x+2
limit as t approaches 2 of (t+2)^{3/2}(2t+4)^{1/3}
\lim\:_{t\to\:2}((t+2)^{\frac{3}{2}}(2t+4)^{\frac{1}{3}})
integral from 1/7 to 3 of 16xln(7x)
\int\:_{\frac{1}{7}}^{3}16x\ln(7x)dx
integral from 0 to 4 of sqrt(17)
\int\:_{0}^{4}\sqrt{17}dx
integral from 1 to t of (37)/(x^3)
\int\:_{1}^{t}\frac{37}{x^{3}}dx
y^'=-x^2-1/x*y
y^{\prime\:}=-x^{2}-\frac{1}{x}\cdot\:y
integral of 1/(sqrt(1-64x^2))
\int\:\frac{1}{\sqrt{1-64x^{2}}}dx
integral of (2x+3)/(x^3+x^2-2x)
\int\:\frac{2x+3}{x^{3}+x^{2}-2x}dx
sum from n=2 to infinity of 1/n (-1)^n
\sum\:_{n=2}^{\infty\:}\frac{1}{n}(-1)^{n}
area y^2=16-x,(y+2)^2=x+4
area\:y^{2}=16-x,(y+2)^{2}=x+4
derivative of (e^s)/(7s+1)
derivative\:\frac{e^{s}}{7s+1}
derivative of f(x)=(xe^{2x-4}),x=2
derivative\:f(x)=(xe^{2x-4}),x=2
sum from n=1 to infinity of (n-7)/(n+7)
\sum\:_{n=1}^{\infty\:}\frac{n-7}{n+7}
derivative of f(x)=sec^5(x)
derivative\:f(x)=\sec^{5}(x)
derivative of (128000/x+x^2)
\frac{d}{dx}(\frac{128000}{x}+x^{2})
(\partial)/(\partial x)(3x^2+4xy+2y^2)
\frac{\partial\:}{\partial\:x}(3x^{2}+4xy+2y^{2})
tangent of 4cos(x),\at x=-pi/3
tangent\:4\cos(x),\at\:x=-\frac{π}{3}
area (x^2-12),(x-6)
area\:(x^{2}-12),(x-6)
derivative of x^3-x-1
\frac{d}{dx}(x^{3}-x-1)
derivative of (x-2)^2-sin(3x)
derivative\:(x-2)^{2}-\sin(3x)
integral of (3-2x)/(5x+7)
\int\:\frac{3-2x}{5x+7}dx
integral from 1 to 2 of 9r^4ln(r)
\int\:_{1}^{2}9r^{4}\ln(r)dr
y^'+2ty=t
y^{\prime\:}+2ty=t
derivative of (cos(x))/(x^8)
derivative\:\frac{\cos(x)}{x^{8}}
tangent of y=8xsin(x)
tangent\:y=8x\sin(x)
integral from 0 to 0.5 of 2x
\int\:_{0}^{0.5}2xdx
integral of sqrt(1+4t^2)
\int\:\sqrt{1+4t^{2}}dt
limit as x approaches 2+of (-5)/(x-2)
\lim\:_{x\to\:2+}(\frac{-5}{x-2})
derivative of (2x-3/(2x+5))
\frac{d}{dx}(\frac{2x-3}{2x+5})
integral of (x-3)*cos(x)
\int\:(x-3)\cdot\:\cos(x)dx
integral of (5r^2)/(r+3)
\int\:\frac{5r^{2}}{r+3}dr
derivative of x^2ln(5x)
\frac{d}{dx}(x^{2}\ln(5x))
derivative of (x-2)^2
derivative\:(x-2)^{2}
factor 7p^3+4p
factor\:7p^{3}+4p
derivative of 2e^{3x}
derivative\:2e^{3x}
1
..
886
887
888
889
890
..
1823