You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
inverse of g(x)=(e^x)/(1+2e^x)
inverse\:g(x)=\frac{e^{x}}{1+2e^{x}}
distance (5,9),(-7,-7)
distance\:(5,9),(-7,-7)
domain of x^2+4x+6
domain\:x^{2}+4x+6
inverse of (4x)/(x+7)
inverse\:\frac{4x}{x+7}
f(x)=tan(2x)
f(x)=\tan(2x)
inverse of f(x)=22.0264997
inverse\:f(x)=22.0264997
range of 2t
range\:2t
extreme f(x)=2x^3+3x^2-72x
extreme\:f(x)=2x^{3}+3x^{2}-72x
range of sqrt(x)-3
range\:\sqrt{x}-3
line (3,5),(5,10)
line\:(3,5),(5,10)
extreme (x^2+9)^3
extreme\:(x^{2}+9)^{3}
domain of f(x)= 1/(sqrt(x+4))
domain\:f(x)=\frac{1}{\sqrt{x+4}}
distance (5,-7),(0,3)
distance\:(5,-7),(0,3)
intercepts of (-x^2+8)/(2x^2-3)
intercepts\:\frac{-x^{2}+8}{2x^{2}-3}
perpendicular y= 5/3 x+5
perpendicular\:y=\frac{5}{3}x+5
domain of (9x^2-1)/(9x^3+6x^2+x)
domain\:\frac{9x^{2}-1}{9x^{3}+6x^{2}+x}
inverse of y= pi/4+sin(x)
inverse\:y=\frac{π}{4}+\sin(x)
inverse of f(x)=22x
inverse\:f(x)=22x
extreme f(x)= x/(x+2)
extreme\:f(x)=\frac{x}{x+2}
extreme f(x)=x^8e^x-6
extreme\:f(x)=x^{8}e^{x}-6
range of f(x)=e^{x+1}
range\:f(x)=e^{x+1}
asymptotes of (4+x^4)/(x^2-x^4)
asymptotes\:\frac{4+x^{4}}{x^{2}-x^{4}}
inverse of f(x)=2^{-x}
inverse\:f(x)=2^{-x}
inverse of f(x)=10x-2
inverse\:f(x)=10x-2
parity f(x)=-x^4+x^2+1
parity\:f(x)=-x^{4}+x^{2}+1
periodicity of f(x)=5sin(1/4 x)
periodicity\:f(x)=5\sin(\frac{1}{4}x)
extreme f(x)=-x^2+4x+2
extreme\:f(x)=-x^{2}+4x+2
inverse of f(x)=2e^{x+1}-4
inverse\:f(x)=2e^{x+1}-4
domain of f(x)=-(x+1)^2+4
domain\:f(x)=-(x+1)^{2}+4
asymptotes of f(x)= 5/(-3x+3)
asymptotes\:f(x)=\frac{5}{-3x+3}
range of f(x)= 2/(x-2)
range\:f(x)=\frac{2}{x-2}
asymptotes of f(x)=((2x^3+2x))/(x^2-1)
asymptotes\:f(x)=\frac{(2x^{3}+2x)}{x^{2}-1}
range of 3x+4
range\:3x+4
critical f(x)=32x-2x^2
critical\:f(x)=32x-2x^{2}
asymptotes of log_{2}(x)
asymptotes\:\log_{2}(x)
asymptotes of f(x)=(-2x+8)/(x+2)
asymptotes\:f(x)=\frac{-2x+8}{x+2}
inverse of f(x)=(x-3)^2+1/2
inverse\:f(x)=(x-3)^{2}+\frac{1}{2}
domain of 9/(sqrt(t))
domain\:\frac{9}{\sqrt{t}}
domain of f(x)= 1/(x^2-7x-8)
domain\:f(x)=\frac{1}{x^{2}-7x-8}
domain of f(x)=((2x-6))/((x^{(2))+4x-5)}
domain\:f(x)=\frac{(2x-6)}{(x^{(2)}+4x-5)}
perpendicular y=-2x-3
perpendicular\:y=-2x-3
asymptotes of f(x)=(3x^2-108)/(x^2-6x)
asymptotes\:f(x)=\frac{3x^{2}-108}{x^{2}-6x}
asymptotes of f(x)=(x^2+2x)/(x^3-49x)
asymptotes\:f(x)=\frac{x^{2}+2x}{x^{3}-49x}
inverse of f(x)=13x+9
inverse\:f(x)=13x+9
extreme f(x)= 1/4 (3x-2),x<= 3
extreme\:f(x)=\frac{1}{4}(3x-2),x\le\:3
inverse of f(x)=x+1/x
inverse\:f(x)=x+\frac{1}{x}
critical sec^2(x)
critical\:\sec^{2}(x)
extreme f(x)=(x^3)/3-x^2-8x
extreme\:f(x)=\frac{x^{3}}{3}-x^{2}-8x
perpendicular 4x+5y=8,(4,-2)
perpendicular\:4x+5y=8,(4,-2)
domain of 1/(sqrt(x^2-7x))
domain\:\frac{1}{\sqrt{x^{2}-7x}}
extreme f(x)=x^2e^{-x^2}
extreme\:f(x)=x^{2}e^{-x^{2}}
extreme f(x)=-6x^3+9x^2+36x
extreme\:f(x)=-6x^{3}+9x^{2}+36x
distance (-2,-6),(-5,0)
distance\:(-2,-6),(-5,0)
critical f(x)=3x^4+12x
critical\:f(x)=3x^{4}+12x
intercepts of f(x)=-3(4-x)(4x+3)
intercepts\:f(x)=-3(4-x)(4x+3)
slope ofintercept y+4=3(x+1)
slopeintercept\:y+4=3(x+1)
intercepts of 12sqrt(p)
intercepts\:12\sqrt{p}
inverse of f(x)=sqrt(x+1)+2
inverse\:f(x)=\sqrt{x+1}+2
inverse of f(x)=(x-7)/3
inverse\:f(x)=\frac{x-7}{3}
inverse of f(r)=(-3-4r)/(2+3r)
inverse\:f(r)=\frac{-3-4r}{2+3r}
domain of f(x)=sqrt(15-x)
domain\:f(x)=\sqrt{15-x}
midpoint (5,2),(-4,-3)
midpoint\:(5,2),(-4,-3)
asymptotes of f(x)=(4x^2+2)/(4x+4)
asymptotes\:f(x)=\frac{4x^{2}+2}{4x+4}
inflection f(x)= 3/(x+2)
inflection\:f(x)=\frac{3}{x+2}
domain of ln(sqrt(x^2-5x+6))
domain\:\ln(\sqrt{x^{2}-5x+6})
simplify (8.5)(11)
simplify\:(8.5)(11)
domain of f(x)=2-18t
domain\:f(x)=2-18t
inverse of 1/2 log_{10}(2x)
inverse\:\frac{1}{2}\log_{10}(2x)
symmetry (x+2)^2-1
symmetry\:(x+2)^{2}-1
domain of 1/(-10(\frac{1){-5x-6})+3}
domain\:\frac{1}{-10(\frac{1}{-5x-6})+3}
parity (x+1)/(x^2-1)
parity\:\frac{x+1}{x^{2}-1}
inverse of f(x)=sqrt(x+2)
inverse\:f(x)=\sqrt{x+2}
inverse of f(x)=6+1/(7x)
inverse\:f(x)=6+\frac{1}{7x}
simplify (5)(3.4)
simplify\:(5)(3.4)
extreme f(x)=(3x-1)(x+3)(x-2)
extreme\:f(x)=(3x-1)(x+3)(x-2)
perpendicular x-2y=6
perpendicular\:x-2y=6
inverse of f(x)=(x-3)/(x+9)
inverse\:f(x)=\frac{x-3}{x+9}
parity f(x)= 1/(x^2-5x+6)
parity\:f(x)=\frac{1}{x^{2}-5x+6}
domain of f(x)=-3x-2
domain\:f(x)=-3x-2
inverse of f(x)=11^x
inverse\:f(x)=11^{x}
asymptotes of f(x)= 1/(-x+4)
asymptotes\:f(x)=\frac{1}{-x+4}
inverse of x+3
inverse\:x+3
line-3x+y=-1
line\:-3x+y=-1
line x=3
line\:x=3
inflection (98)/(x^3)
inflection\:\frac{98}{x^{3}}
range of-3x+1
range\:-3x+1
inverse of f(x)=3-6x
inverse\:f(x)=3-6x
line m=4,(2,7)
line\:m=4,(2,7)
domain of 1/(sqrt(1+2x))
domain\:\frac{1}{\sqrt{1+2x}}
range of log_{0.5}(x)
range\:\log_{0.5}(x)
extreme f(x)=(x+4)^{6/7}
extreme\:f(x)=(x+4)^{\frac{6}{7}}
extreme 3x^4+4x^3
extreme\:3x^{4}+4x^{3}
domain of f(x)=49x-16
domain\:f(x)=49x-16
inverse of f(x)=((1+x))/x
inverse\:f(x)=\frac{(1+x)}{x}
line (2,5),(3,8)
line\:(2,5),(3,8)
extreme x^6(x-1)^5
extreme\:x^{6}(x-1)^{5}
asymptotes of f(x)=((5+x^4))/(x^2-x^4)
asymptotes\:f(x)=\frac{(5+x^{4})}{x^{2}-x^{4}}
range of f(x)=-sin(x-pi/3)
range\:f(x)=-\sin(x-\frac{π}{3})
domain of f(x)= 5/(3x-9)
domain\:f(x)=\frac{5}{3x-9}
inverse of f(x)=17
inverse\:f(x)=17
1
..
205
206
207
208
209
..
839