Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sin^2(θ/2)=(sec(θ)-1)/(2sec(θ))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sin2(2θ​)=2sec(θ)sec(θ)−1​

Solution

True
Solution steps
sin2(2θ​)=2sec(θ)sec(θ)−1​
Let: u=2θ​sin2(u)=2sec(2u)sec(2u)−1​
Prove sin2(u)=2sec(2u)sec(2u)−1​:True
sin2(u)=2sec(2u)sec(2u)−1​
Manipulating right side2sec(2u)sec(2u)−1​
Express with sin, cos
2sec(2u)−1+sec(2u)​
Use the basic trigonometric identity: sec(x)=cos(x)1​=2⋅cos(2u)1​−1+cos(2u)1​​
Simplify 2⋅cos(2u)1​−1+cos(2u)1​​:2−cos(2u)+1​
2⋅cos(2u)1​−1+cos(2u)1​​
Multiply 2⋅cos(2u)1​:cos(2u)2​
2⋅cos(2u)1​
Multiply fractions: a⋅cb​=ca⋅b​=cos(2u)1⋅2​
Multiply the numbers: 1⋅2=2=cos(2u)2​
=cos(2u)2​−1+cos(2u)1​​
Join −1+cos(2u)1​:cos(2u)−cos(2u)+1​
−1+cos(2u)1​
Convert element to fraction: 1=cos(2u)1cos(2u)​=−cos(2u)1⋅cos(2u)​+cos(2u)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(2u)−1⋅cos(2u)+1​
Multiply: 1⋅cos(2u)=cos(2u)=cos(2u)−cos(2u)+1​
=cos(2u)2​cos(2u)−cos(2u)+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=cos(2u)⋅2(−cos(2u)+1)cos(2u)​
Cancel the common factor: cos(2u)=2−cos(2u)+1​
=21−cos(2u)​
=21−cos(2u)​
Rewrite using trig identities
21−cos(2u)​
Use the Double Angle identity: cos(2x)=1−2sin2(x)=21−(1−2sin2(u))​
Simplify 21−(1−2sin2(u))​:sin2(u)
21−(1−2sin2(u))​
Expand 1−(1−2sin2(u)):2sin2(u)
1−(1−2sin2(u))
−(1−2sin2(u)):−1+2sin2(u)
−(1−2sin2(u))
Distribute parentheses=−(1)−(−2sin2(u))
Apply minus-plus rules−(−a)=a,−(a)=−a=−1+2sin2(u)
=1−1+2sin2(u)
1−1=0=2sin2(u)
=22sin2(u)​
Divide the numbers: 22​=1=sin2(u)
=sin2(u)
=sin2(u)
We showed that the two sides could take the same form⇒True
Therefore sin2(2θ​)=2sec(θ)sec(θ)−1​
We showed that the two sides could take the same form⇒True

Popular Examples

prove cot(t)csc(t)=(csc^2(t)-1)/(cos(t))prove 1/(1+sin(t))=(sec(t)-tan(t))sec(t)prove sin(pi/3)=(sqrt(3))/2prove cos(t)sec(pi/2-t)=cot(t)prove ((1-cos(2x)))/(sin(2x))=tan(x)

Frequently Asked Questions (FAQ)

  • Is sin^2(θ/2)=(sec(θ)-1)/(2sec(θ)) ?

    The answer to whether sin^2(θ/2)=(sec(θ)-1)/(2sec(θ)) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024