Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove sec(2x)=(sec^2(x)+sec^4(x))/(2+sec^2(x)-sec^4(x))

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sec(2x)=2+sec2(x)−sec4(x)sec2(x)+sec4(x)​

Solution

True
Solution steps
sec(2x)=2+sec2(x)−sec4(x)sec2(x)+sec4(x)​
Manipulating right side2+sec2(x)−sec4(x)sec2(x)+sec4(x)​
Express with sin, cos
2+sec2(x)−sec4(x)sec2(x)+sec4(x)​
Use the basic trigonometric identity: sec(x)=cos(x)1​=2+(cos(x)1​)2−(cos(x)1​)4(cos(x)1​)2+(cos(x)1​)4​
Simplify 2+(cos(x)1​)2−(cos(x)1​)4(cos(x)1​)2+(cos(x)1​)4​:2cos2(x)−11​
2+(cos(x)1​)2−(cos(x)1​)4(cos(x)1​)2+(cos(x)1​)4​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
(cos(x)1​)4=cos4(x)1​
(cos(x)1​)4
Apply exponent rule: (ba​)c=bcac​=cos4(x)14​
Apply rule 1a=114=1=cos4(x)1​
=2+cos2(x)1​−cos4(x)1​(cos(x)1​)2+(cos(x)1​)4​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
(cos(x)1​)4=cos4(x)1​
(cos(x)1​)4
Apply exponent rule: (ba​)c=bcac​=cos4(x)14​
Apply rule 1a=114=1=cos4(x)1​
=2+cos2(x)1​−cos4(x)1​cos2(x)1​+cos4(x)1​​
Join 2+cos2(x)1​−cos4(x)1​:cos4(x)2cos4(x)+cos2(x)−1​
2+cos2(x)1​−cos4(x)1​
Convert element to fraction: 2=12​=12​+cos2(x)1​−cos4(x)1​
Least Common Multiplier of 1,cos2(x),cos4(x):cos4(x)
1,cos2(x),cos4(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear in at least one of the factored expressions=cos4(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos4(x)
For 12​:multiply the denominator and numerator by cos4(x)12​=1⋅cos4(x)2cos4(x)​=cos4(x)2cos4(x)​
For cos2(x)1​:multiply the denominator and numerator by cos2(x)cos2(x)1​=cos2(x)cos2(x)1⋅cos2(x)​=cos4(x)cos2(x)​
=cos4(x)2cos4(x)​+cos4(x)cos2(x)​−cos4(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos4(x)2cos4(x)+cos2(x)−1​
=cos4(x)2cos4(x)+cos2(x)−1​cos2(x)1​+cos4(x)1​​
Join cos2(x)1​+cos4(x)1​:cos4(x)cos2(x)+1​
cos2(x)1​+cos4(x)1​
Least Common Multiplier of cos2(x),cos4(x):cos4(x)
cos2(x),cos4(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos2(x) or cos4(x)=cos4(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos4(x)
For cos2(x)1​:multiply the denominator and numerator by cos2(x)cos2(x)1​=cos2(x)cos2(x)1⋅cos2(x)​=cos4(x)cos2(x)​
=cos4(x)cos2(x)​+cos4(x)1​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos4(x)cos2(x)+1​
=cos4(x)2cos4(x)+cos2(x)−1​cos4(x)cos2(x)+1​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=cos4(x)(2cos4(x)+cos2(x)−1)(cos2(x)+1)cos4(x)​
Cancel the common factor: cos4(x)=2cos4(x)+cos2(x)−1cos2(x)+1​
Factor 2cos4(x)+cos2(x)−1:(2cos2(x)−1)(cos2(x)+1)
2cos4(x)+cos2(x)−1
Let u=cos2(x)=2u2+u−1
Factor 2u2+u−1:(2u−1)(u+1)
2u2+u−1
Break the expression into groups
2u2+u−1
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=−2,check if u+v=1
Check u=1,v=−2:u∗v=−2,u+v=−1⇒FalseCheck u=2,v=−1:u∗v=−2,u+v=1⇒True
u=2,v=−1
Group into (ax2+ux)+(vx+c)(2u2−u)+(2u−1)
=(2u2−u)+(2u−1)
Factor out ufrom 2u2−u:u(2u−1)
2u2−u
Apply exponent rule: ab+c=abacu2=uu=2uu−u
Factor out common term u=u(2u−1)
=u(2u−1)+(2u−1)
Factor out common term 2u−1=(2u−1)(u+1)
=(2u−1)(u+1)
Substitute back u=cos2(x)=(cos2(x)+1)(2cos2(x)−1)
=(2cos2(x)−1)(cos2(x)+1)cos2(x)+1​
Cancel the common factor: cos2(x)+1=2cos2(x)−11​
=2cos2(x)−11​
=−1+2cos2(x)1​
Rewrite using trig identities
−1+2cos2(x)1​
Use the Double Angle identity: 2cos2(x)−1=cos(2x)=cos(2x)1​
=cos(2x)1​
Rewrite using trig identities
Use the basic trigonometric identity: cos(x)=sec(x)1​sec(2x)1​1​
Simplify
sec(2x)1​1​
Apply the fraction rule: cb​1​=bc​=1sec(2x)​
Apply rule 1a​=a=sec(2x)
sec(2x)
sec(2x)
We showed that the two sides could take the same form⇒True

Popular Examples

prove 1/(csc(x))= 1/(sin(x))prove 1+tan^2(A)=sec^3(A)cos(A)prove sec(0)-cos(0)=tan(0)sin(0)prove 1-sin(θ)cos(θ)tan(θ)=cos^2(θ)prove tan^2(x)+sin(x)csc(x)=sec^2(x)

Frequently Asked Questions (FAQ)

  • Is sec(2x)=(sec^2(x)+sec^4(x))/(2+sec^2(x)-sec^4(x)) ?

    The answer to whether sec(2x)=(sec^2(x)+sec^4(x))/(2+sec^2(x)-sec^4(x)) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024