Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove (cot(3θ)-tan(3θ))/(sin(3θ)+cos(3θ))=csc(3θ)-sec(3θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove sin(3θ)+cos(3θ)cot(3θ)−tan(3θ)​=csc(3θ)−sec(3θ)

Solution

True
Solution steps
sin(3θ)+cos(3θ)cot(3θ)−tan(3θ)​=csc(3θ)−sec(3θ)
Manipulating left sidesin(3θ)+cos(3θ)cot(3θ)−tan(3θ)​
Express with sin, cos
cos(3θ)+sin(3θ)cot(3θ)−tan(3θ)​
Use the basic trigonometric identity: cot(x)=sin(x)cos(x)​=cos(3θ)+sin(3θ)sin(3θ)cos(3θ)​−tan(3θ)​
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=cos(3θ)+sin(3θ)sin(3θ)cos(3θ)​−cos(3θ)sin(3θ)​​
Simplify cos(3θ)+sin(3θ)sin(3θ)cos(3θ)​−cos(3θ)sin(3θ)​​:sin(3θ)cos(3θ)cos(3θ)−sin(3θ)​
cos(3θ)+sin(3θ)sin(3θ)cos(3θ)​−cos(3θ)sin(3θ)​​
Join sin(3θ)cos(3θ)​−cos(3θ)sin(3θ)​:sin(3θ)cos(3θ)cos2(3θ)−sin2(3θ)​
sin(3θ)cos(3θ)​−cos(3θ)sin(3θ)​
Least Common Multiplier of sin(3θ),cos(3θ):sin(3θ)cos(3θ)
sin(3θ),cos(3θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin(3θ) or cos(3θ)=sin(3θ)cos(3θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sin(3θ)cos(3θ)
For sin(3θ)cos(3θ)​:multiply the denominator and numerator by cos(3θ)sin(3θ)cos(3θ)​=sin(3θ)cos(3θ)cos(3θ)cos(3θ)​=sin(3θ)cos(3θ)cos2(3θ)​
For cos(3θ)sin(3θ)​:multiply the denominator and numerator by sin(3θ)cos(3θ)sin(3θ)​=cos(3θ)sin(3θ)sin(3θ)sin(3θ)​=sin(3θ)cos(3θ)sin2(3θ)​
=sin(3θ)cos(3θ)cos2(3θ)​−sin(3θ)cos(3θ)sin2(3θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sin(3θ)cos(3θ)cos2(3θ)−sin2(3θ)​
=cos(3θ)+sin(3θ)sin(3θ)cos(3θ)cos2(3θ)−sin2(3θ)​​
Apply the fraction rule: acb​​=c⋅ab​=sin(3θ)cos(3θ)(cos(3θ)+sin(3θ))cos2(3θ)−sin2(3θ)​
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(3θ)−sin2(3θ)=(cos(3θ)+sin(3θ))(cos(3θ)−sin(3θ))=sin(3θ)cos(3θ)(cos(3θ)+sin(3θ))(cos(3θ)+sin(3θ))(cos(3θ)−sin(3θ))​
Cancel the common factor: cos(3θ)+sin(3θ)=sin(3θ)cos(3θ)cos(3θ)−sin(3θ)​
=sin(3θ)cos(3θ)cos(3θ)−sin(3θ)​
=cos(3θ)sin(3θ)cos(3θ)−sin(3θ)​
Rewrite using trig identities
Use the basic trigonometric identity: sin(x)=csc(x)1​cos(3θ)csc(3θ)1​cos(3θ)−csc(3θ)1​​
Use the basic trigonometric identity: cos(x)=sec(x)1​sec(3θ)1​⋅csc(3θ)1​sec(3θ)1​−csc(3θ)1​​
Simplify
sec(3θ)1​⋅csc(3θ)1​sec(3θ)1​−csc(3θ)1​​
Multiply sec(3θ)1​⋅csc(3θ)1​:sec(3θ)csc(3θ)1​
sec(3θ)1​⋅csc(3θ)1​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sec(3θ)csc(3θ)1⋅1​
Multiply the numbers: 1⋅1=1=sec(3θ)csc(3θ)1​
=sec(3θ)csc(3θ)1​sec(3θ)1​−csc(3θ)1​​
Join sec(3θ)1​−csc(3θ)1​:sec(3θ)csc(3θ)csc(3θ)−sec(3θ)​
sec(3θ)1​−csc(3θ)1​
Least Common Multiplier of sec(3θ),csc(3θ):sec(3θ)csc(3θ)
sec(3θ),csc(3θ)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sec(3θ) or csc(3θ)=sec(3θ)csc(3θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM sec(3θ)csc(3θ)
For sec(3θ)1​:multiply the denominator and numerator by csc(3θ)sec(3θ)1​=sec(3θ)csc(3θ)1⋅csc(3θ)​=sec(3θ)csc(3θ)csc(3θ)​
For csc(3θ)1​:multiply the denominator and numerator by sec(3θ)csc(3θ)1​=csc(3θ)sec(3θ)1⋅sec(3θ)​=sec(3θ)csc(3θ)sec(3θ)​
=sec(3θ)csc(3θ)csc(3θ)​−sec(3θ)csc(3θ)sec(3θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=sec(3θ)csc(3θ)csc(3θ)−sec(3θ)​
=sec(3θ)csc(3θ)1​sec(3θ)csc(3θ)csc(3θ)−sec(3θ)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=sec(3θ)csc(3θ)⋅1(csc(3θ)−sec(3θ))sec(3θ)csc(3θ)​
Refine=sec(3θ)csc(3θ)(csc(3θ)−sec(3θ))sec(3θ)csc(3θ)​
Cancel the common factor: sec(3θ)=csc(3θ)(csc(3θ)−sec(3θ))csc(3θ)​
Cancel the common factor: csc(3θ)=csc(3θ)−sec(3θ)
csc(3θ)−sec(3θ)
csc(3θ)−sec(3θ)
We showed that the two sides could take the same form⇒True

Popular Examples

prove sin(-pi/2-θ)=-cos(θ)prove-2cos(2x)*sin(2x)=sin(-4x)prove (cos(θ^2))(1/(cos(θ^2)))=1prove sin^2(x)(1+(cos(x))/(sin(x)))=1prove tan(x)+1=1

Frequently Asked Questions (FAQ)

  • Is (cot(3θ)-tan(3θ))/(sin(3θ)+cos(3θ))=csc(3θ)-sec(3θ) ?

    The answer to whether (cot(3θ)-tan(3θ))/(sin(3θ)+cos(3θ))=csc(3θ)-sec(3θ) is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024