Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

0.5sin(2t)+1.2>1.45

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

0.5sin(2t)+1.2>1.45

Solution

12π​+πn<t<125π​+πn
+2
Interval Notation
(12π​+πn,125π​+πn)
Decimal
0.26179…+πn<t<1.30899…+πn
Solution steps
0.5sin(2t)+1.2>1.45
Multiply both sides by 100
0.5sin(2t)+1.2>1.45
To eliminate decimal points, multiply by 10 for every digit after the decimal pointThere are 2digits to the right of the decimal point, therefore multiply by 1000.5sin(2t)⋅100+1.2⋅100>1.45⋅100
Refine50sin(2t)+120>145
50sin(2t)+120>145
Move 120to the right side
50sin(2t)+120>145
Subtract 120 from both sides50sin(2t)+120−120>145−120
Simplify50sin(2t)>25
50sin(2t)>25
Divide both sides by 50
50sin(2t)>25
Divide both sides by 505050sin(2t)​>5025​
Simplifysin(2t)>21​
sin(2t)>21​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(21​)+2πn<2t<π−arcsin(21​)+2πn
If a<u<bthen a<uandu<barcsin(21​)+2πn<2tand2t<π−arcsin(21​)+2πn
arcsin(21​)+2πn<2t:t>12π​+πn
arcsin(21​)+2πn<2t
Switch sides2t>arcsin(21​)+2πn
Simplify arcsin(21​)+2πn:6π​+2πn
arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​+2πn
2t>6π​+2πn
Divide both sides by 2
2t>6π​+2πn
Divide both sides by 222t​>26π​​+22πn​
Simplify
22t​>26π​​+22πn​
Simplify 22t​:t
22t​
Divide the numbers: 22​=1=t
Simplify 26π​​+22πn​:12π​+πn
26π​​+22πn​
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=12π​+πn
t>12π​+πn
t>12π​+πn
t>12π​+πn
2t<π−arcsin(21​)+2πn:t<125π​+πn
2t<π−arcsin(21​)+2πn
Simplify π−arcsin(21​)+2πn:π−6π​+2πn
π−arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−6π​+2πn
2t<π−6π​+2πn
Divide both sides by 2
2t<π−6π​+2πn
Divide both sides by 222t​<2π​−26π​​+22πn​
Simplify
22t​<2π​−26π​​+22πn​
Simplify 22t​:t
22t​
Divide the numbers: 22​=1=t
Simplify 2π​−26π​​+22πn​:2π​−12π​+πn
2π​−26π​​+22πn​
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
=2π​−12π​+πn
t<2π​−12π​+πn
t<2π​−12π​+πn
Simplify 2π​−12π​:125π​
2π​−12π​
Least Common Multiplier of 2,12:12
2,12
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 2 or 12=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 2π​:multiply the denominator and numerator by 62π​=2⋅6π6​=12π6​
=12π6​−12π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π6−π​
Add similar elements: 6π−π=5π=125π​
t<125π​+πn
t<125π​+πn
Combine the intervalst>12π​+πnandt<125π​+πn
Merge Overlapping Intervals12π​+πn<t<125π​+πn

Popular Examples

tan^2(x)+2tan(x)>3sin^2(2t)<05sin(1/2 (x+pi/4))-1>=-7cos^2(x)< 1/21/(sin^2(x))>= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024