Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan^2(x)+2tan(x)>3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan2(x)+2tan(x)>3

Solution

4π​+πn<x<2π​+πnor−2π​+πn<x<−arctan(3)+πn
+2
Interval Notation
(4π​+πn,2π​+πn)∪(−2π​+πn,−arctan(3)+πn)
Decimal
0.78539…+πn<x<1.57079…+πnor−1.57079…+πn<x<−1.24904…+πn
Solution steps
tan2(x)+2tan(x)>3
Let: u=tan(x)u2+2u>3
u2+2u>3:u<−3oru>1
u2+2u>3
Rewrite in standard form
u2+2u>3
Subtract 3 from both sidesu2+2u−3>3−3
Simplifyu2+2u−3>0
u2+2u−3>0
Factor u2+2u−3:(u−1)(u+3)
u2+2u−3
Break the expression into groups
u2+2u−3
Definition
Factors of 3:1,3
3
Divisors (Factors)
Find the Prime factors of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Add 1 1
The factors of 31,3
Negative factors of 3:−1,−3
Multiply the factors by −1 to get the negative factors−1,−3
For every two factors such that u∗v=−3,check if u+v=2
Check u=1,v=−3:u∗v=−3,u+v=−2⇒FalseCheck u=3,v=−1:u∗v=−3,u+v=2⇒True
u=3,v=−1
Group into (ax2+ux)+(vx+c)(u2−u)+(3u−3)
=(u2−u)+(3u−3)
Factor out ufrom u2−u:u(u−1)
u2−u
Apply exponent rule: ab+c=abacu2=uu=uu−u
Factor out common term u=u(u−1)
Factor out 3from 3u−3:3(u−1)
3u−3
Factor out common term 3=3(u−1)
=u(u−1)+3(u−1)
Factor out common term u−1=(u−1)(u+3)
(u−1)(u+3)>0
Identify the intervals
Find the signs of the factors of (u−1)(u+3)
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Find the signs of u+3
u+3=0:u=−3
u+3=0
Move 3to the right side
u+3=0
Subtract 3 from both sidesu+3−3=0−3
Simplifyu=−3
u=−3
u+3<0:u<−3
u+3<0
Move 3to the right side
u+3<0
Subtract 3 from both sidesu+3−3<0−3
Simplifyu<−3
u<−3
u+3>0:u>−3
u+3>0
Move 3to the right side
u+3>0
Subtract 3 from both sidesu+3−3>0−3
Simplifyu>−3
u>−3
Summarize in a table:u−1u+3(u−1)(u+3)​u<−3−−+​u=−3−00​−3<u<1−+−​u=10+0​u>1+++​​
Identify the intervals that satisfy the required condition: >0u<−3oru>1
u<−3oru>1
u<−3oru>1
Substitute back u=tan(x)tan(x)<−3ortan(x)>1
tan(x)<−3:−2π​+πn<x<−arctan(3)+πn
tan(x)<−3
If tan(x)<athen −2π​+πn<x<arctan(a)+πn−2π​+πn<x<arctan(−3)+πn
Simplify arctan(−3):−arctan(3)
arctan(−3)
Use the following property: arctan(−x)=−arctan(x)arctan(−3)=−arctan(3)=−arctan(3)
−2π​+πn<x<−arctan(3)+πn
tan(x)>1:4π​+πn<x<2π​+πn
tan(x)>1
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(1)+πn<x<2π​+πn
Simplify arctan(1):4π​
arctan(1)
Use the following trivial identity:arctan(1)=4π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=4π​
4π​+πn<x<2π​+πn
Combine the intervals−2π​+πn<x<−arctan(3)+πnor4π​+πn<x<2π​+πn
Merge Overlapping Intervals4π​+πn<x<2π​+πnor−2π​+πn<x<−arctan(3)+πn

Popular Examples

sin^2(2t)<05sin(1/2 (x+pi/4))-1>=-7cos^2(x)< 1/21/(sin^2(x))>= 1tan(x)>= 1/(sqrt(3))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024