Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3cos(3 x/2-pi/4)-1>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3cos(32x​−4π​)−1>0

Solution

6π−4arccos(31​)​+34π​n<x<6π+4arccos(31​)​+34π​n
+2
Interval Notation
(6π−4arccos(31​)​+34π​n,6π+4arccos(31​)​+34π​n)
Decimal
−0.29704…+34π​n<x<1.34423…+34π​n
Solution steps
3cos(3⋅2x​−4π​)−1>0
Move 1to the right side
3cos(32x​−4π​)−1>0
Add 1 to both sides3cos(32x​−4π​)−1+1>0+1
Simplify3cos(32x​−4π​)>1
3cos(32x​−4π​)>1
Divide both sides by 3
3cos(32x​−4π​)>1
Divide both sides by 333cos(32x​−4π​)​>31​
Simplifycos(32x​−4π​)>31​
cos(32x​−4π​)>31​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(31​)+2πn<(3⋅2x​−4π​)<arccos(31​)+2πn
If a<u<bthen a<uandu<b−arccos(31​)+2πn<3⋅2x​−4π​and3⋅2x​−4π​<arccos(31​)+2πn
−arccos(31​)+2πn<3⋅2x​−4π​:x>6π−4arccos(31​)​+34π​n
−arccos(31​)+2πn<3⋅2x​−4π​
Switch sides3⋅2x​−4π​>−arccos(31​)+2πn
Move 4π​to the right side
3⋅2x​−4π​>−arccos(31​)+2πn
Add 4π​ to both sides3⋅2x​−4π​+4π​>−arccos(31​)+2πn+4π​
Simplify3⋅2x​>−arccos(31​)+2πn+4π​
3⋅2x​>−arccos(31​)+2πn+4π​
Refine 3⋅2x​:23x​
3⋅2x​
Multiply fractions: a⋅cb​=ca⋅b​=2x⋅3​
23x​>−arccos(31​)+2πn+4π​
Multiply both sides by 2
23x​>−arccos(31​)+2πn+4π​
Multiply both sides by 223x​⋅2>−arccos(31​)⋅2+2πn⋅2+4π​⋅2
Simplify
23x​⋅2>−arccos(31​)⋅2+2πn⋅2+4π​⋅2
Simplify 23x​⋅2:3x
23x​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=23x⋅2​
Cancel the common factor: 2=3x
Simplify arccos(31​)⋅2:2arccos(31​)
arccos(31​)⋅2
Apply the commutative law: arccos(31​)⋅2=2arccos(31​)2arccos(31​)
Simplify 2πn⋅2:4πn
2πn⋅2
Multiply the numbers: 2⋅2=4=4πn
Simplify 4π​⋅2:2π​
4π​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
3x>−2arccos(31​)+4πn+2π​
3x>−2arccos(31​)+4πn+2π​
3x>−2arccos(31​)+4πn+2π​
Divide both sides by 3
3x>−2arccos(31​)+4πn+2π​
Divide both sides by 333x​>−32arccos(31​)​+34πn​+32π​​
Simplify
33x​>−32arccos(31​)​+34πn​+32π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −32arccos(31​)​+34πn​+32π​​:34πn​+6π​−32arccos(31​)​
−32arccos(31​)​+34πn​+32π​​
Group like terms=34πn​+32π​​−32arccos(31​)​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=34πn​+6π​−32arccos(31​)​
x>34πn​+6π​−32arccos(31​)​
x>34πn​+6π​−32arccos(31​)​
Simplify 6π​−32arccos(31​)​:6π−4arccos(31​)​
6π​−32arccos(31​)​
Least Common Multiplier of 6,3:6
6,3
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 6 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 32arccos(31​)​:multiply the denominator and numerator by 232arccos(31​)​=3⋅22arccos(31​)⋅2​=64arccos(31​)​
=6π​−64arccos(31​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π−4arccos(31​)​
x>6π−4arccos(31​)​+34π​n
x>6π−4arccos(31​)​+34π​n
3⋅2x​−4π​<arccos(31​)+2πn:x<6π+4arccos(31​)​+34π​n
3⋅2x​−4π​<arccos(31​)+2πn
Move 4π​to the right side
3⋅2x​−4π​<arccos(31​)+2πn
Add 4π​ to both sides3⋅2x​−4π​+4π​<arccos(31​)+2πn+4π​
Simplify3⋅2x​<arccos(31​)+2πn+4π​
3⋅2x​<arccos(31​)+2πn+4π​
Refine 3⋅2x​:23x​
3⋅2x​
Multiply fractions: a⋅cb​=ca⋅b​=2x⋅3​
23x​<arccos(31​)+2πn+4π​
Multiply both sides by 2
23x​<arccos(31​)+2πn+4π​
Multiply both sides by 223x​⋅2<arccos(31​)⋅2+2πn⋅2+4π​⋅2
Simplify
23x​⋅2<arccos(31​)⋅2+2πn⋅2+4π​⋅2
Simplify 23x​⋅2:3x
23x​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=23x⋅2​
Cancel the common factor: 2=3x
Simplify arccos(31​)⋅2:2arccos(31​)
arccos(31​)⋅2
Apply the commutative law: arccos(31​)⋅2=2arccos(31​)2arccos(31​)
Simplify 2πn⋅2:4πn
2πn⋅2
Multiply the numbers: 2⋅2=4=4πn
Simplify 4π​⋅2:2π​
4π​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=4π2​
Cancel the common factor: 2=2π​
3x<2arccos(31​)+4πn+2π​
3x<2arccos(31​)+4πn+2π​
3x<2arccos(31​)+4πn+2π​
Divide both sides by 3
3x<2arccos(31​)+4πn+2π​
Divide both sides by 333x​<32arccos(31​)​+34πn​+32π​​
Simplify
33x​<32arccos(31​)​+34πn​+32π​​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32arccos(31​)​+34πn​+32π​​:34πn​+6π​+32arccos(31​)​
32arccos(31​)​+34πn​+32π​​
Group like terms=34πn​+32π​​+32arccos(31​)​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=34πn​+6π​+32arccos(31​)​
x<34πn​+6π​+32arccos(31​)​
x<34πn​+6π​+32arccos(31​)​
Simplify 6π​+32arccos(31​)​:6π+4arccos(31​)​
6π​+32arccos(31​)​
Least Common Multiplier of 6,3:6
6,3
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 6 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 32arccos(31​)​:multiply the denominator and numerator by 232arccos(31​)​=3⋅22arccos(31​)⋅2​=64arccos(31​)​
=6π​+64arccos(31​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π+4arccos(31​)​
x<6π+4arccos(31​)​+34π​n
x<6π+4arccos(31​)​+34π​n
Combine the intervalsx>6π−4arccos(31​)​+34π​nandx<6π+4arccos(31​)​+34π​n
Merge Overlapping Intervals6π−4arccos(31​)​+34π​n<x<6π+4arccos(31​)​+34π​n

Popular Examples

2sin(x)<= 1,2cos(x)<sqrt(3)solvefor θ,3r^2cos^2(θ)+r^2sin^2(θ)<= 1(sin(x)-1/2)(sin(x)-7/2)<= 0sin(x)-2<=-5/2tan(1/x)<= tan(1/(x+1))
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024