Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin(2x-30)+1>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin(2x−30)+1>0

Solution

12180−π​+πn<x<127π+180​+πn
+2
Interval Notation
(12180−π​+πn,127π+180​+πn)
Decimal
14.73820…+πn<x<16.83259…+πn
Solution steps
2sin(2x−30)+1>0
Move 1to the right side
2sin(2x−30)+1>0
Subtract 1 from both sides2sin(2x−30)+1−1>0−1
Simplify2sin(2x−30)>−1
2sin(2x−30)>−1
Divide both sides by 2
2sin(2x−30)>−1
Divide both sides by 222sin(2x−30)​>2−1​
Simplifysin(2x−30)>−21​
sin(2x−30)>−21​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(−21​)+2πn<(2x−30)<π−arcsin(−21​)+2πn
If a<u<bthen a<uandu<barcsin(−21​)+2πn<2x−30and2x−30<π−arcsin(−21​)+2πn
arcsin(−21​)+2πn<2x−30:x>12180−π​+πn
arcsin(−21​)+2πn<2x−30
Switch sides2x−30>arcsin(−21​)+2πn
Simplify arcsin(−21​)+2πn:−6π​+2πn
arcsin(−21​)+2πn
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=−6π​+2πn
2x−30>−6π​+2πn
Move 30to the right side
2x−30>−6π​+2πn
Add 30 to both sides2x−30+30>−6π​+2πn+30
Simplify2x>−6π​+2πn+30
2x>−6π​+2πn+30
Divide both sides by 2
2x>−6π​+2πn+30
Divide both sides by 222x​>−26π​​+22πn​+230​
Simplify
22x​>−26π​​+22πn​+230​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −26π​​+22πn​+230​:15+πn−12π​
−26π​​+22πn​+230​
Group like terms=230​+22πn​−26π​​
230​=15
230​
Divide the numbers: 230​=15=15
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
=15+πn−12π​
x>15+πn−12π​
x>15+πn−12π​
Simplify 15−12π​:12180−π​
15−12π​
Convert element to fraction: 15=1215⋅12​=1215⋅12​−12π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=1215⋅12−π​
Multiply the numbers: 15⋅12=180=12180−π​
x>12180−π​+πn
x>12180−π​+πn
2x−30<π−arcsin(−21​)+2πn:x<127π+180​+πn
2x−30<π−arcsin(−21​)+2πn
Simplify π−arcsin(−21​)+2πn:π+6π​+2πn
π−arcsin(−21​)+2πn
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=π−(−6π​)+2πn
Apply rule −(−a)=a=π+6π​+2πn
2x−30<π+6π​+2πn
Move 30to the right side
2x−30<π+6π​+2πn
Add 30 to both sides2x−30+30<π+6π​+2πn+30
Simplify2x<π+6π​+2πn+30
2x<π+6π​+2πn+30
Divide both sides by 2
2x<π+6π​+2πn+30
Divide both sides by 222x​<2π​+26π​​+22πn​+230​
Simplify
22x​<2π​+26π​​+22πn​+230​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 2π​+26π​​+22πn​+230​:πn+2π​+12π​+15
2π​+26π​​+22πn​+230​
Group like terms=2π​+230​+22πn​+26π​​
230​=15
230​
Divide the numbers: 230​=15=15
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
26π​​=12π​
26π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅2π​
Multiply the numbers: 6⋅2=12=12π​
=2π​+15+πn+12π​
Group like terms=πn+2π​+12π​+15
x<πn+2π​+12π​+15
x<πn+2π​+12π​+15
Simplify 2π​+12π​+15:127π+180​
2π​+12π​+15
Convert element to fraction: 15=115​=2π​+12π​+115​
Least Common Multiplier of 2,12,1:12
2,12,1
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Prime factorization of 1
Compute a number comprised of factors that appear in at least one of the following:
2,12,1
=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 2π​:multiply the denominator and numerator by 62π​=2⋅6π6​=12π6​
For 115​:multiply the denominator and numerator by 12115​=1⋅1215⋅12​=12180​
=12π6​+12π​+12180​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π6+π+180​
Add similar elements: 6π+π=7π=127π+180​
x<127π+180​+πn
x<127π+180​+πn
Combine the intervalsx>12180−π​+πnandx<127π+180​+πn
Merge Overlapping Intervals12180−π​+πn<x<127π+180​+πn

Popular Examples

cos(x)<-1/2tan^2(x)-3tan(x)+2<0solvefor x,arctan(|x-y|)>0cot^2(2t)<0solvefor x,sin(((x))/(cos(y)))>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024