Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec(x)<= cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec(x)≤cos(x)

Solution

2π​+2πn<x<23π​+2πn
+2
Interval Notation
(2π​+2πn,23π​+2πn)
Decimal
1.57079…+2πn<x<4.71238…+2πn
Solution steps
sec(x)≤cos(x)
Move cos(x)to the left side
sec(x)≤cos(x)
Subtract cos(x) from both sidessec(x)−cos(x)≤cos(x)−cos(x)
sec(x)−cos(x)≤0
sec(x)−cos(x)≤0
Periodicity of sec(x)−cos(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodssec(x),cos(x)
Periodicity of sec(x):2π
Periodicity of sec(x)is 2π=2π
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
Combine periods: 2π,2π
=2π
Express with sin, cos
sec(x)−cos(x)≤0
Use the basic trigonometric identity: sec(x)=cos(x)1​cos(x)1​−cos(x)≤0
cos(x)1​−cos(x)≤0
Simplify cos(x)1​−cos(x):cos(x)1−cos2(x)​
cos(x)1​−cos(x)
Convert element to fraction: cos(x)=cos(x)cos(x)cos(x)​=cos(x)1​−cos(x)cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1−cos(x)cos(x)​
1−cos(x)cos(x)=1−cos2(x)
1−cos(x)cos(x)
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=1−cos2(x)
=cos(x)1−cos2(x)​
cos(x)1−cos2(x)​≤0
Find the zeroes and undifined points of cos(x)1−cos2(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x)1−cos2(x)​=0
cos(x)1−cos2(x)​=0,0≤x<2π:x=0,x=π
cos(x)1−cos2(x)​=0,0≤x<2π
Solve by substitution
cos(x)1−cos2(x)​=0
Let: cos(x)=uu1−u2​=0
u1−u2​=0:u=1,u=−1
u1−u2​=0
g(x)f(x)​=0⇒f(x)=01−u2=0
Solve 1−u2=0:u=1,u=−1
1−u2=0
Move 1to the right side
1−u2=0
Subtract 1 from both sides1−u2−1=0−1
Simplify−u2=−1
−u2=−1
Divide both sides by −1
−u2=−1
Divide both sides by −1−1−u2​=−1−1​
Simplifyu2=1
u2=1
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Apply rule 1​=1=1
−1​=−1
−1​
Apply rule 1​=1=−1
u=1,u=−1
u=1,u=−1
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of u1−u2​ and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=1,u=−1
Substitute back u=cos(x)cos(x)=1,cos(x)=−1
cos(x)=1,cos(x)=−1
cos(x)=1,0≤x<2π:x=0
cos(x)=1,0≤x<2π
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Solutions for the range 0≤x<2πx=0
cos(x)=−1,0≤x<2π:x=π
cos(x)=−1,0≤x<2π
General solutions for cos(x)=−1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Solutions for the range 0≤x<2πx=π
Combine all the solutionsx=0,x=π
Find the undefined points:x=2π​,x=23π​
Find the zeros of the denominatorcos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
0,2π​,π,23π​
Identify the intervals0<x<2π​,2π​<x<π,π<x<23π​,23π​<x<2π
Summarize in a table:1−cos2(x)cos(x)cos(x)1−cos2(x)​​x=00+0​0<x<2π​+++​x=2π​+0Undefined​2π​<x<π+−−​x=π0−0​π<x<23π​+−−​x=23π​+0Undefined​23π​<x<2π+++​x=2π0+0​​
Identify the intervals that satisfy the required condition: ≤0x=0or2π​<x<πorx=πorπ<x<23π​orx=2π
Merge Overlapping Intervals
x=0or2π​<x<23π​orx=2π
The union of two intervals is the set of numbers which are in either interval
x=0or2π​<x<π
x=0or2π​<x<π
The union of two intervals is the set of numbers which are in either interval
x=0or2π​<x<πorx=π
x=0or2π​<x≤π
The union of two intervals is the set of numbers which are in either interval
x=0or2π​<x≤πorπ<x<23π​
x=0or2π​<x<23π​
The union of two intervals is the set of numbers which are in either interval
x=0or2π​<x<23π​orx=2π
x=0or2π​<x<23π​orx=2π
x=0or2π​<x<23π​orx=2π
Apply the periodicity of sec(x)−cos(x)2π​+2πn<x<23π​+2πn

Popular Examples

-sin(2x)>0sin((n*pi}{(\frac{1+sqrt(5))/2)^2})>06-3cos((pit)/2)>6(10pi)/9 <= arctan(θ)cos(x)-1>=-2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024