Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^2(x)+sin(x)>2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos2(x)+sin(x)>2

Solution

2πn<x<6π​+2πnor65π​+2πn<x<π+2πn
+2
Interval Notation
(2πn,6π​+2πn)∪(65π​+2πn,π+2πn)
Decimal
2πn<x<0.52359…+2πnor2.61799…+2πn<x<3.14159…+2πn
Solution steps
2cos2(x)+sin(x)>2
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)2(1−sin2(x))+sin(x)>2
Let: u=sin(x)2(1−u2)+u>2
2(1−u2)+u>2:0<u<21​
2(1−u2)+u>2
Rewrite in standard form
2(1−u2)+u>2
Expand 2(1−u2)+u:2−2u2+u
2(1−u2)+u
Expand 2(1−u2):2−2u2
2(1−u2)
Apply the distributive law: a(b−c)=ab−aca=2,b=1,c=u2=2⋅1−2u2
Multiply the numbers: 2⋅1=2=2−2u2
=2−2u2+u
2−2u2+u>2
Subtract 2 from both sides2−2u2+u−2>2−2
Simplify−2u2+u>0
−2u2+u>0
Factor −2u2+u:−u(2u−1)
−2u2+u
Apply exponent rule: ab+c=abacu2=uu=−2uu+u
Factor out common term −u=−u(2u−1)
−u(2u−1)>0
Multiply both sides by −1 (reverse the inequality)(−u(2u−1))(−1)<0⋅(−1)
Simplifyu(2u−1)<0
Identify the intervals
Find the signs of the factors of u(2u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of 2u−1
2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
2u−1<0:u<21​
2u−1<0
Move 1to the right side
2u−1<0
Add 1 to both sides2u−1+1<0+1
Simplify2u<1
2u<1
Divide both sides by 2
2u<1
Divide both sides by 222u​<21​
Simplifyu<21​
u<21​
2u−1>0:u>21​
2u−1>0
Move 1to the right side
2u−1>0
Add 1 to both sides2u−1+1>0+1
Simplify2u>1
2u>1
Divide both sides by 2
2u>1
Divide both sides by 222u​>21​
Simplifyu>21​
u>21​
Summarize in a table:u2u−1u(2u−1)​u<0−−+​u=00−0​0<u<21​+−−​u=21​+00​u>21​+++​​
Identify the intervals that satisfy the required condition: <00<u<21​
0<u<21​
0<u<21​
Substitute back u=sin(x)0<sin(x)<21​
If a<u<bthen a<uandu<b0<sin(x)andsin(x)<21​
0<sin(x):2πn<x<π+2πn
0<sin(x)
Switch sidessin(x)>0
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0)+2πn<x<π−arcsin(0)+2πn
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
Simplify π−arcsin(0):π
π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−0
π−0=π=π
0+2πn<x<π+2πn
Simplify2πn<x<π+2πn
sin(x)<21​:−67π​+2πn<x<6π​+2πn
sin(x)<21​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(21​)+2πn<x<arcsin(21​)+2πn
Simplify −π−arcsin(21​):−67π​
−π−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−6π​
Simplify
−π−6π​
Convert element to fraction: π=6π6​=−6π6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π6−π​
Add similar elements: −6π−π=−7π=6−7π​
Apply the fraction rule: b−a​=−ba​=−67π​
=−67π​
Simplify arcsin(21​):6π​
arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​
−67π​+2πn<x<6π​+2πn
Combine the intervals2πn<x<π+2πnand−67π​+2πn<x<6π​+2πn
Merge Overlapping Intervals2πn<x<6π​+2πnor65π​+2πn<x<π+2πn

Popular Examples

0.5<= sin(30t)sin(x)-sqrt(3)cos(x)>sqrt(2)cos(x)<1+sin(x)cos(x)-sin(x)<= 03>4+sin(n)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024