Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/(sin(2x))< 1/(sin(x)),0<= x<= pi

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2x)1​<sin(x)1​,0≤x≤π

Solution

0<x<3π​or2π​<x<π
+2
Interval Notation
(0,3π​)∪(2π​,π)
Decimal
0<x<1.04719…or1.57079…<x<3.14159…
Solution steps
sin(2x)1​<sin(x)1​,0≤x≤π
Move sin(x)1​to the left side
sin(2x)1​<sin(x)1​
Subtract sin(x)1​ from both sidessin(2x)1​−sin(x)1​<sin(x)1​−sin(x)1​
sin(2x)1​−sin(x)1​<0
sin(2x)1​−sin(x)1​<0
Use the following identity: sin(2x)=2cos(x)sin(x)2cos(x)sin(x)1​−sin(x)1​<0
Simplify 2cos(x)sin(x)1​−sin(x)1​:2cos(x)sin(x)1−2cos(x)​
2cos(x)sin(x)1​−sin(x)1​
Least Common Multiplier of 2cos(x)sin(x),sin(x):2cos(x)sin(x)
2cos(x)sin(x),sin(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in 2cos(x)sin(x) or sin(x)=2cos(x)sin(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 2cos(x)sin(x)
For sin(x)1​:multiply the denominator and numerator by 2cos(x)sin(x)1​=sin(x)⋅2cos(x)1⋅2cos(x)​=2cos(x)sin(x)2cos(x)​
=2cos(x)sin(x)1​−2cos(x)sin(x)2cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2cos(x)sin(x)1−2cos(x)​
2cos(x)sin(x)1−2cos(x)​<0
Periodicity of 2cos(x)sin(x)1​−sin(x)1​:2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periods2cos(x)sin(x)1​,sin(x)1​
Periodicity of 2cos(x)sin(x)1​:π
2cos(x)sin(x)1​is composed of the following functions and periods:cos(x)with periodicity of 2π
The compound periodicity is:π
Periodicity of sin(x)1​:2π
Periodicity of a⋅sin(bx+c)+d=∣b∣periodicityofsin(x)​Periodicity of sin(x)is 2π=∣1∣2π​
Simplify=2π
Combine periods: π,2π
=2π
Find the zeroes and undifined points of 2cos(x)sin(x)1−2cos(x)​for 0≤x<2π
To find the zeroes, set the inequality to zero2cos(x)sin(x)1−2cos(x)​=0
2cos(x)sin(x)1−2cos(x)​=0,0≤x<2π:x=3π​,x=35π​
2cos(x)sin(x)1−2cos(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=01−2cos(x)=0
Move 1to the right side
1−2cos(x)=0
Subtract 1 from both sides1−2cos(x)−1=0−1
Simplify−2cos(x)=−1
−2cos(x)=−1
Divide both sides by −2
−2cos(x)=−1
Divide both sides by −2−2−2cos(x)​=−2−1​
Simplifycos(x)=21​
cos(x)=21​
General solutions for cos(x)=21​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=3π​+2πn,x=35π​+2πn
x=3π​+2πn,x=35π​+2πn
Solutions for the range 0≤x<2πx=3π​,x=35π​
Find the undefined points:x=2π​,x=23π​,x=0,x=π
Find the zeros of the denominator2cos(x)sin(x)=0
Solving each part separatelycos(x)=0orsin(x)=0
cos(x)=0,0≤x<2π:x=2π​,x=23π​
cos(x)=0,0≤x<2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
Combine all the solutionsx=2π​,x=23π​,x=0,x=π
0,3π​,2π​,π,23π​,35π​
Identify the intervals0<x<3π​,3π​<x<2π​,2π​<x<π,π<x<23π​,23π​<x<35π​,35π​<x<2π
Summarize in a table:1−2cos(x)cos(x)sin(x)2cos(x)sin(x)1−2cos(x)​​x=0−+0Undefined​0<x<3π​−++−​x=3π​0++0​3π​<x<2π​++++​x=2π​+0+Undefined​2π​<x<π+−+−​x=π+−0Undefined​π<x<23π​+−−+​x=23π​+0−Undefined​23π​<x<35π​++−−​x=35π​0+−0​35π​<x<2π−+−+​x=2π−+0Undefined​​
Identify the intervals that satisfy the required condition: <00<x<3π​or2π​<x<πor23π​<x<35π​
Apply the periodicity of 2cos(x)sin(x)1​−sin(x)1​2πn<x<3π​+2πnor2π​+2πn<x<π+2πnor23π​+2πn<x<35π​+2πn
Combine the intervals2πn<x<3π​+2πnor2π​+2πn<x<π+2πnor23π​+2πn<x<35π​+2πnand0≤x≤π
0<x<3π​or2π​<x<π

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2tan(2x)<= 3tan(x)1/((sin(x))^2)< 4/3 ,0<x< pi/(15)cos^2(x)<sin^2(x)sin(x-45)> 1/2 sqrt(3),0<= x<= 3602sin^2(x)>-1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024