Решения
Калькулятор Интегралов (Первообразной Функции)Калькулятор ПроизводныхАлгебраический КалькуляторКалькулятор МатрицДополнительные инструменты...
Графика
Линейный графикЭкспоненциальный графикКвадратичный графикГрафик синусаДополнительные инструменты...
Калькуляторы
Калькулятор ИМТКалькулятор сложных процентовКалькулятор процентовКалькулятор ускоренияДополнительные инструменты...
Геометрия
Калькулятор теоремы ПифагораКалькулятор Площади ОкружностиКалькулятор равнобедренного треугольникаКалькулятор треугольниковДополнительные инструменты...
Инструменты
БлокнотыГруппыШпаргалкиРабочие листыУпражнятьсяПодтвердить
ru
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Популярное Тригонометрия >

доказывать (tan(x)+cot(x))tan(x)=sec^2(x)

  • Пре Алгебра
  • Алгебра
  • Пре Исчисление
  • Исчисление
  • Функции
  • Линейная алгебра
  • Тригонометрия
  • Статистика
  • Химия
  • Экономика
  • Преобразования

Решение

доказывать (tan(x)+cot(x))tan(x)=sec2(x)

Решение

Верно
Шаги решения
(tan(x)+cot(x))tan(x)=sec2(x)
Манипуляции с левой стороны(tan(x)+cot(x))tan(x)
Выразите с помощью синуса (sin), косинуса (cos)
(cot(x)+tan(x))tan(x)
Испльзуйте основное тригонометрическое тождество: cot(x)=sin(x)cos(x)​=(sin(x)cos(x)​+tan(x))tan(x)
Испльзуйте основное тригонометрическое тождество: tan(x)=cos(x)sin(x)​=(sin(x)cos(x)​+cos(x)sin(x)​)cos(x)sin(x)​
Упростить (sin(x)cos(x)​+cos(x)sin(x)​)cos(x)sin(x)​:cos2(x)cos2(x)+sin2(x)​
(sin(x)cos(x)​+cos(x)sin(x)​)cos(x)sin(x)​
Умножьте дроби: a⋅cb​=ca⋅b​=cos(x)sin(x)(sin(x)cos(x)​+cos(x)sin(x)​)​
Присоединить sin(x)cos(x)​+cos(x)sin(x)​к одной дроби:sin(x)cos(x)cos2(x)+sin2(x)​
sin(x)cos(x)​+cos(x)sin(x)​
Наименьший Общий Множитель sin(x),cos(x):sin(x)cos(x)
sin(x),cos(x)
Наименьший Общий Кратный (НОК)
Вычислите выражение, состоящее из факторов, которые появляются либо в sin(x) либо cos(x)=sin(x)cos(x)
Отрегулируйте дроби на основе Наименьшего Общего Кратного (НОК)
Умножьте каждый числитель на такое же число, необходимое для умножения его
соответствующего знаменателя, чтобы превратить его в НОК sin(x)cos(x)
Для sin(x)cos(x)​:умножить знаменатель и числитель на cos(x)sin(x)cos(x)​=sin(x)cos(x)cos(x)cos(x)​=sin(x)cos(x)cos2(x)​
Для cos(x)sin(x)​:умножить знаменатель и числитель на sin(x)cos(x)sin(x)​=cos(x)sin(x)sin(x)sin(x)​=sin(x)cos(x)sin2(x)​
=sin(x)cos(x)cos2(x)​+sin(x)cos(x)sin2(x)​
Так как знаменатели равны, сложите дроби: ca​±cb​=ca±b​=sin(x)cos(x)cos2(x)+sin2(x)​
=cos(x)sin(x)cos(x)cos2(x)+sin2(x)​sin(x)​
Умножьте sin(x)sin(x)cos(x)cos2(x)+sin2(x)​:cos(x)cos2(x)+sin2(x)​
sin(x)sin(x)cos(x)cos2(x)+sin2(x)​
Умножьте дроби: a⋅cb​=ca⋅b​=sin(x)cos(x)(cos2(x)+sin2(x))sin(x)​
Отмените общий множитель: sin(x)=cos(x)cos2(x)+sin2(x)​
=cos(x)cos(x)cos2(x)+sin2(x)​​
Примените правило дробей: acb​​=c⋅ab​=cos(x)cos(x)cos2(x)+sin2(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Примените правило возведения в степень: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Добавьте числа: 1+1=2=cos2(x)
=cos2(x)cos2(x)+sin2(x)​
=cos2(x)cos2(x)+sin2(x)​
=cos2(x)cos2(x)+sin2(x)​
Перепишите используя тригонометрические тождества
cos2(x)cos2(x)+sin2(x)​
Используйте основное тригонометрическое тождество (тождество Пифагора): cos2(x)+sin2(x)=1=cos2(x)1​
=cos2(x)1​
Перепишите используя тригонометрические тождества
Испльзуйте основное тригонометрическое тождество: cos(x)=sec(x)1​(sec(x)1​)21​
После упрощения получаем
(sec(x)1​)21​
(sec(x)1​)2=sec2(x)1​
(sec(x)1​)2
Примените правило возведения в степень: (ba​)c=bcac​=sec2(x)12​
Примените правило 1a=112=1=sec2(x)1​
=sec2(x)1​1​
Примените правило дробей: cb​1​=bc​=1sec2(x)​
Примените правило 1a​=a=sec2(x)
sec2(x)
sec2(x)
Мы показали, что две стороны могут принимать одинаковую форму⇒Верно

Популярные примеры

доказывать (cos(x)+sin(x))^2-2sin(x)cos(x)=1доказывать 1-cos^2(x)=(tan^2(x))/(sec^2(x))доказывать ((cos^2(x)))/((1-sin(x)))=1+sin(x)доказывать 8csc^2(x)-3cot^2(x)=3+5csc^2(x)доказывать sin^2(t)=(sin(t))^2
Инструменты для обученияИИ Решатель ЗадачРабочие листыУпражнятьсяШпаргалкиКалькуляторыГрафический калькуляторКалькулятор по ГеометрииПроверить решение
ПриложенияПриложение Symbolab (Android)Графический калькулятор (Android)Упражняться (Android)Приложение Symbolab (iOS)Графический калькулятор (iOS)Упражняться (iOS)Расширение для ChromeSymbolab Math Solver API
КомпанияО SymbolabБлогПомощь
ЮридическийКонфиденциальностьУсловияПолитика использованияНастройки файлов cookieНе продавать и не передавать мои личные данныеАвторское право, Правила сообщества, Структуры данных и алгоритмы (DSA) & другие Юридические ресурсыЮридический центр Learneo
Соцсети
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024