You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
laplacetransform sin(5t)
laplacetransform\:\sin(5t)
(\partial)/(\partial x)(-3xy(-3-x-y))
\frac{\partial\:}{\partial\:x}(-3xy(-3-x-y))
(dy)/(dx)=((x^2+y))/(x^3)
\frac{dy}{dx}=\frac{(x^{2}+y)}{x^{3}}
f(x)=ln(x+2)
f(x)=\ln(x+2)
integral from 8 to 9 of 1/(x^2-1)
\int\:_{8}^{9}\frac{1}{x^{2}-1}dx
area y=sqrt(9-x^2),0<= x<= 2
area\:y=\sqrt{9-x^{2}},0\le\:x\le\:2
tangent of f(x)=7e^{x^2-9x+8},\at x=0
tangent\:f(x)=7e^{x^{2}-9x+8},\at\:x=0
derivative of y=164sqrt(4x^4)+4
derivative\:y=164\sqrt{4x^{4}}+4
y^{''}+6y^'+5y=10
y^{\prime\:\prime\:}+6y^{\prime\:}+5y=10
integral of 1/h
\int\:\frac{1}{h}dh
simplify (x^4)/4+(x^3)/3-(x^2)/2-5
simplify\:\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{x^{2}}{2}-5
integral of x^2*e^{-x^3}
\int\:x^{2}\cdot\:e^{-x^{3}}dx
tangent of x/(x^2+64)
tangent\:\frac{x}{x^{2}+64}
limit as x approaches 3 of ((x^2-6))/((x-9))
\lim\:_{x\to\:3}(\frac{(x^{2}-6)}{(x-9)})
derivative of log_{6}(3x^3+4x^2+4x)
\frac{d}{dx}(\log_{6}(3x^{3}+4x^{2}+4x))
integral of sqrt(64-5x^2)
\int\:\sqrt{64-5x^{2}}dx
integral of ((x^2))/(sqrt(20-4x+x^2))
\int\:\frac{(x^{2})}{\sqrt{20-4x+x^{2}}}dx
integral of (ln(16x))/x
\int\:\frac{\ln(16x)}{x}dx
y^'=(e^t)/(2y)
y^{\prime\:}=\frac{e^{t}}{2y}
integral of (sin^4(x)cos(x))
\int\:(\sin^{4}(x)\cos(x))dx
tangent of f(x)=x^2-4,(-5,21)
tangent\:f(x)=x^{2}-4,(-5,21)
sum from n=1 to infinity of 6/n
\sum\:_{n=1}^{\infty\:}\frac{6}{n}
derivative of sqrt(2+\sqrt{6x)}
\frac{d}{dx}(\sqrt{2+\sqrt{6x}})
d/(dy)(y^y)
\frac{d}{dy}(y^{y})
derivative of e^{3x^2}+ln(5x-4)
\frac{d}{dx}(e^{3x^{2}}+\ln(5x-4))
derivative of x-sin^2(x-4)
\frac{d}{dx}(x-\sin^{2}(x)-4)
(\partial)/(\partial x)(e^{-x}cos(-8y))
\frac{\partial\:}{\partial\:x}(e^{-x}\cos(-8y))
inverse oflaplace 1/((s^2+3s+2))
inverselaplace\:\frac{1}{(s^{2}+3s+2)}
limit as x approaches infinity of cos(x)
\lim\:_{x\to\:\infty\:}(\cos(x))
integral from-2 to 3 of (20)/(x^4)
\int\:_{-2}^{3}\frac{20}{x^{4}}dx
(\partial)/(\partial y)(sqrt(x+yz))
\frac{\partial\:}{\partial\:y}(\sqrt{x+yz})
derivative of x^2sqrt(x^2-9)
\frac{d}{dx}(x^{2}\sqrt{x^{2}-9})
limit as x approaches 12 of (x^3)/3
\lim\:_{x\to\:12}(\frac{x^{3}}{3})
(\partial)/(\partial y)(x+y-320)
\frac{\partial\:}{\partial\:y}(x+y-320)
(\partial)/(\partial x)(x^4+y^3)
\frac{\partial\:}{\partial\:x}(x^{4}+y^{3})
taylor 1/(1+x),0
taylor\:\frac{1}{1+x},0
sum from n=1 to infinity of (-9^n)/(n^4)
\sum\:_{n=1}^{\infty\:}\frac{-9^{n}}{n^{4}}
integral of (x^2+2x)*3^x
\int\:(x^{2}+2x)\cdot\:3^{x}dx
integral from-3 to 3 of (13-x^2)-(x^2-5)
\int\:_{-3}^{3}(13-x^{2})-(x^{2}-5)dx
integral of 1/(sqrt(x^2+169))
\int\:\frac{1}{\sqrt{x^{2}+169}}dx
(2x+1)((dy)/(dx))+y=(2x+1)^{3/2}
(2x+1)(\frac{dy}{dx})+y=(2x+1)^{\frac{3}{2}}
y^{''}+3y=-48x^2e^{3x}
y^{\prime\:\prime\:}+3y=-48x^{2}e^{3x}
f(x)=arcsinh(x)
f(x)=\arcsinh(x)
integral of-510x^2+3414x+1998
\int\:-510x^{2}+3414x+1998dx
derivative of f(x)=(9-x^3)^{-2}
derivative\:f(x)=(9-x^{3})^{-2}
10y^{''}+2y^'+5y=0
10y^{\prime\:\prime\:}+2y^{\prime\:}+5y=0
derivative of ln(sqrt(x+4))
derivative\:\ln(\sqrt{x+4})
(xy-y^2)dx+x^3dy=0
(xy-y^{2})dx+x^{3}dy=0
tangent of f(x)=3x^2-3x
tangent\:f(x)=3x^{2}-3x
derivative of y=(sqrt(x))/(1+x)
derivative\:y=\frac{\sqrt{x}}{1+x}
slope of (0,-3),(-3,0)
slope\:(0,-3),(-3,0)
(dy)/(dx)=((x+y^2))/(2y)
\frac{dy}{dx}=\frac{(x+y^{2})}{2y}
(\partial}{\partial x}(\frac{(2x))/y)
\frac{\partial\:}{\partial\:x}(\frac{(2x)}{y})
y^{''}-4y=6e^t
y^{\prime\:\prime\:}-4y=6e^{t}
area 5cos(2x),5-5cos(2x),0, pi/2
area\:5\cos(2x),5-5\cos(2x),0,\frac{π}{2}
integral of (20x^3)/(4+5x^4)
\int\:\frac{20x^{3}}{4+5x^{4}}dx
y^{''}+4y=t*sin(2t)
y^{\prime\:\prime\:}+4y=t\cdot\:\sin(2t)
derivative of 2+5arctan(x/2)
derivative\:2+5\arctan(\frac{x}{2})
derivative of 1/((x+6)^2)
derivative\:\frac{1}{(x+6)^{2}}
xy^'+y=yy
xy^{\prime\:}+y=yy
(\partial)/(\partial y)(x^2-yx)
\frac{\partial\:}{\partial\:y}(x^{2}-yx)
derivative of (2x)/(x+1)
derivative\:\frac{2x}{x+1}
integral from 0 to 1/2 of 30x
\int\:_{0}^{\frac{1}{2}}30xdx
derivative of (x+1/(sqrt(x^2+1)))
\frac{d}{dx}(\frac{x+1}{\sqrt{x^{2}+1}})
integral of 1/4 x^4
\int\:\frac{1}{4}x^{4}dx
derivative of e^{-2x}-2e^{-2x}x
\frac{d}{dx}(e^{-2x}-2e^{-2x}x)
d/(dt)(-1cos(t)+8sin(t))
\frac{d}{dt}(-1\cos(t)+8\sin(t))
integral from 0 to 1 of 4sqrt(x)-4x
\int\:_{0}^{1}4\sqrt{x}-4xdx
integral of (x^5)/((3-x^6)^4)
\int\:\frac{x^{5}}{(3-x^{6})^{4}}dx
sum from n=5 to infinity of (n!)/(n^n)
\sum\:_{n=5}^{\infty\:}\frac{n!}{n^{n}}
integral of 1/(sqrt(-t^2+6t-8))
\int\:\frac{1}{\sqrt{-t^{2}+6t-8}}dt
derivative of 0.006x^3+0.02x^2+0.5x
\frac{d}{dx}(0.006x^{3}+0.02x^{2}+0.5x)
d/(dy)(ycos(x)y)
\frac{d}{dy}(y\cos(x)y)
tangent of 3x^2-9
tangent\:3x^{2}-9
y^'=(e^x)/(y^2)
y^{\prime\:}=\frac{e^{x}}{y^{2}}
(\partial)/(\partial x)(2y+z)
\frac{\partial\:}{\partial\:x}(2y+z)
integral of (sqrt(x))/(x+4)
\int\:\frac{\sqrt{x}}{x+4}dx
integral from 0 to 3 of 5x
\int\:_{0}^{3}5xdx
integral of 1/(sqrt(x^2-64))
\int\:\frac{1}{\sqrt{x^{2}-64}}dx
limit as x approaches-2 of sqrt(8+1^3)
\lim\:_{x\to\:-2}(\sqrt{8+1^{3}})
derivative of (2x^2+5(5x-3))
\frac{d}{dx}((2x^{2}+5)(5x-3))
(dy)/(dx)=(x+y)/(y-x)
\frac{dy}{dx}=\frac{x+y}{y-x}
tangent of f(x)=10x^3-45x^2+60x-30
tangent\:f(x)=10x^{3}-45x^{2}+60x-30
area y=e^{2x},x=0,x=3
area\:y=e^{2x},x=0,x=3
integral of (e^{6sqrt(t)})/(sqrt(t))
\int\:\frac{e^{6\sqrt{t}}}{\sqrt{t}}dt
derivative of e^{((-k/x)})
\frac{d}{dx}(e^{(\frac{-k}{x})})
derivative of 2(sin(x^2)+2x^2cos(x^2))
derivative\:2(\sin(x^{2})+2x^{2}\cos(x^{2}))
tangent of f(x)= 1/(sqrt(3x)),\at x=9
tangent\:f(x)=\frac{1}{\sqrt{3x}},\at\:x=9
limit as x approaches-7 of (7-|x|)/(7+x)
\lim\:_{x\to\:-7}(\frac{7-\left|x\right|}{7+x})
integral from 1 to 5 of (ln(y))/(xy)
\int\:_{1}^{5}\frac{\ln(y)}{xy}dy
(e^{-4x})^'
(e^{-4x})^{\prime\:}
integral of 30x^2
\int\:30x^{2}dx
limit as x approaches 9 of x-9
\lim\:_{x\to\:9}(x-9)
limit as x approaches+8 of x^{(2/3)}
\lim\:_{x\to\:+8}(x^{(\frac{2}{3})})
derivative of (8x^2-2x+1/(x^2-5x))
\frac{d}{dx}(\frac{8x^{2}-2x+1}{x^{2}-5x})
integral of csc(y)
\int\:\csc(y)dy
tangent of y=(8x)/((x^2+1))
tangent\:y=\frac{8x}{(x^{2}+1)}
expand (2x-3)^4
expand\:(2x-3)^{4}
derivative of e^xln(x^5)
\frac{d}{dx}(e^{x}\ln(x^{5}))
x^'+x=e^t
x^{\prime\:}+x=e^{t}
1
..
379
380
381
382
383
..
1823