You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Functions & Graphing Problems
extreme-4x^4+3x^3+3x^2
extreme\:-4x^{4}+3x^{3}+3x^{2}
distance (-4,2),(2,4)
distance\:(-4,2),(2,4)
domain of f(x)=(x^2+1+8x)/(x^2+1+2x)
domain\:f(x)=\frac{x^{2}+1+8x}{x^{2}+1+2x}
intercepts of f(x)=x^2-2x+3
intercepts\:f(x)=x^{2}-2x+3
inflection f(x)=-x^2+8x+8
inflection\:f(x)=-x^{2}+8x+8
asymptotes of (x^2+x+1)/x
asymptotes\:\frac{x^{2}+x+1}{x}
extreme f(x)=sqrt(x^2+2)
extreme\:f(x)=\sqrt{x^{2}+2}
domain of f(x)=(-x^2+9x+1)/(2x^2+14x+24)
domain\:f(x)=\frac{-x^{2}+9x+1}{2x^{2}+14x+24}
slope of-8
slope\:-8
range of log_{a}(x)
range\:\log_{a}(x)
domain of f(x)=(x+9)^2
domain\:f(x)=(x+9)^{2}
domain of f(x)=-9/(2t^{(3/2))}
domain\:f(x)=-\frac{9}{2t^{(\frac{3}{2})}}
f(x)=e^{-x}
f(x)=e^{-x}
asymptotes of f(x)=(9e^x)/(e^x-8)
asymptotes\:f(x)=\frac{9e^{x}}{e^{x}-8}
asymptotes of y=(4x^2-21x+5)/(x^2-12)
asymptotes\:y=\frac{4x^{2}-21x+5}{x^{2}-12}
slope ofintercept-5-4
slopeintercept\:-5-4
inverse of f(x)=6(x-2)
inverse\:f(x)=6(x-2)
domain of f(x)=sqrt(2x-9)
domain\:f(x)=\sqrt{2x-9}
asymptotes of f(x)=(x^2)/(1-x)
asymptotes\:f(x)=\frac{x^{2}}{1-x}
domain of f(x)=(x+2)/(sqrt(x+4)-3)
domain\:f(x)=\frac{x+2}{\sqrt{x+4}-3}
inverse of f(x)=2*\sqrt[5]{8x-5}
inverse\:f(x)=2\cdot\:\sqrt[5]{8x-5}
range of f(x)=sqrt(6x^2+5x-21)
range\:f(x)=\sqrt{6x^{2}+5x-21}
midpoint (2,3),(-3,-2)
midpoint\:(2,3),(-3,-2)
inverse of ln(x-1)
inverse\:\ln(x-1)
shift f(x)=2sin(1/3 x-pi)-4
shift\:f(x)=2\sin(\frac{1}{3}x-π)-4
inverse of f(x)= 1/4 x+2
inverse\:f(x)=\frac{1}{4}x+2
parallel-3
parallel\:-3
inverse of f(x)=(x-3)^{1/2}
inverse\:f(x)=(x-3)^{\frac{1}{2}}
simplify (-1.5)(5.5)
simplify\:(-1.5)(5.5)
symmetry x^2-1
symmetry\:x^{2}-1
line (1,2),(-2,5)
line\:(1,2),(-2,5)
asymptotes of f(x)=(5x)/(x-3)
asymptotes\:f(x)=\frac{5x}{x-3}
inverse of f(x)=e^{2x+1}
inverse\:f(x)=e^{2x+1}
intercepts of 6x^2+6x-12
intercepts\:6x^{2}+6x-12
range of (2x)/(x^2-9)
range\:\frac{2x}{x^{2}-9}
periodicity of f(x)=cos(7x)
periodicity\:f(x)=\cos(7x)
domain of sqrt(x+2)-2
domain\:\sqrt{x+2}-2
inverse of y=-2x+5
inverse\:y=-2x+5
intercepts of 3+x
intercepts\:3+x
range of f(x)=log_{2}(2^x)
range\:f(x)=\log_{2}(2^{x})
inverse of f(x)=((2x+1))/(x-3)
inverse\:f(x)=\frac{(2x+1)}{x-3}
inverse of f(x)=e^{6x-5}
inverse\:f(x)=e^{6x-5}
inverse of g(x)=(3x-8)/(8x+1)
inverse\:g(x)=\frac{3x-8}{8x+1}
inverse of y=6x
inverse\:y=6x
slope ofintercept y=1
slopeintercept\:y=1
domain of sqrt(x)+7
domain\:\sqrt{x}+7
inverse of y=e^{2x-3}
inverse\:y=e^{2x-3}
domain of f(x)=sqrt(6x-12)
domain\:f(x)=\sqrt{6x-12}
critical f(x)=x^3-12x-5
critical\:f(x)=x^{3}-12x-5
slope ofintercept 9x+2y=18
slopeintercept\:9x+2y=18
inverse of y=1.1^x
inverse\:y=1.1^{x}
inverse of f(x)=7x+4
inverse\:f(x)=7x+4
critical x^2e^{-3x}
critical\:x^{2}e^{-3x}
slope ofintercept y-5x=5
slopeintercept\:y-5x=5
intercepts of f(x)=x-8
intercepts\:f(x)=x-8
asymptotes of (4x^2+1)/(x^2+x+16)
asymptotes\:\frac{4x^{2}+1}{x^{2}+x+16}
parity f(x)=x^3-1/x
parity\:f(x)=x^{3}-\frac{1}{x}
domain of f(x)=(4x^2+7x+27)/((x-3)(x+4))
domain\:f(x)=\frac{4x^{2}+7x+27}{(x-3)(x+4)}
inverse of y=-3/4 x+5
inverse\:y=-\frac{3}{4}x+5
range of 4sqrt(x-2)-1
range\:4\sqrt{x-2}-1
domain of f(x)=x+sqrt(x)+7
domain\:f(x)=x+\sqrt{x}+7
domain of 2x^2+x
domain\:2x^{2}+x
domain of f(x)=((x^2-4x-12))/(x+1)
domain\:f(x)=\frac{(x^{2}-4x-12)}{x+1}
domain of sqrt(36-x^2)*sqrt(x+2)
domain\:\sqrt{36-x^{2}}\cdot\:\sqrt{x+2}
extreme f(x)=2x-5/(x^2)
extreme\:f(x)=2x-\frac{5}{x^{2}}
midpoint (-6,-6),(3,5)
midpoint\:(-6,-6),(3,5)
domain of log_{2}(2x-2)-3
domain\:\log_{2}(2x-2)-3
extreme f(x)=310x^3-x^2-8x+48
extreme\:f(x)=310x^{3}-x^{2}-8x+48
inverse of f(x)=x^2-10x
inverse\:f(x)=x^{2}-10x
critical f(x)=2x+5cos(x)
critical\:f(x)=2x+5\cos(x)
inverse of f(x)=3+x^3
inverse\:f(x)=3+x^{3}
domain of f(x)=sqrt((x+1)/(x^2-3x+2))
domain\:f(x)=\sqrt{\frac{x+1}{x^{2}-3x+2}}
parallel 7x+3y=9
parallel\:7x+3y=9
perpendicular 1
perpendicular\:1
range of 3x-4
range\:3x-4
slope of 21x+7y=14
slope\:21x+7y=14
parallel Y(x)=-1/5 x-6,(-5,3)
parallel\:Y(x)=-\frac{1}{5}x-6,(-5,3)
asymptotes of f(x)=(x+2)/(x^2-4)
asymptotes\:f(x)=\frac{x+2}{x^{2}-4}
domain of f(x)=e^{-x^2}
domain\:f(x)=e^{-x^{2}}
domain of x^2-8x+12
domain\:x^{2}-8x+12
domain of g(x)=(sqrt(x-5))/(x-10)
domain\:g(x)=\frac{\sqrt{x-5}}{x-10}
slope of y=1075x+9396
slope\:y=1075x+9396
inflection f(x)=(x^2)/(x-1)
inflection\:f(x)=\frac{x^{2}}{x-1}
range of 2-sqrt(4-x)
range\:2-\sqrt{4-x}
domain of f(x)= 3/(x^2-25)
domain\:f(x)=\frac{3}{x^{2}-25}
domain of f(x)=-x^3+9x^2-20x
domain\:f(x)=-x^{3}+9x^{2}-20x
parallel 3x+y=-6
parallel\:3x+y=-6
asymptotes of f(x)=(10)/(x^2-7x+10)
asymptotes\:f(x)=\frac{10}{x^{2}-7x+10}
parallel 7x+2y=24,(-2,-10)
parallel\:7x+2y=24,(-2,-10)
inverse of x+7
inverse\:x+7
inverse of f(x)=x(x-1)
inverse\:f(x)=x(x-1)
slope ofintercept 3x-2y=6
slopeintercept\:3x-2y=6
slope of 3x=-y-5
slope\:3x=-y-5
domain of f(x)=-sqrt(1-x)
domain\:f(x)=-\sqrt{1-x}
inverse of (x+5)^2
inverse\:(x+5)^{2}
domain of x/(x-4)
domain\:\frac{x}{x-4}
slope ofintercept 3x-y=3
slopeintercept\:3x-y=3
range of 4/(3-t)
range\:\frac{4}{3-t}
f(x)=x^4+1
f(x)=x^{4}+1
\begin{pmatrix}-2&\end{pmatrix}\begin{pmatrix}2&\end{pmatrix}
1
..
193
194
195
196
197
..
839