Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(4x)>0.5

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(4x)>0.5

Solution

24π​+2π​n<x<245π​+2π​n
+2
Interval Notation
(24π​+2π​n,245π​+2π​n)
Decimal
0.13089…+2π​n<x<0.65449…+2π​n
Solution steps
sin(4x)>0.5
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(0.5)+2πn<4x<π−arcsin(0.5)+2πn
If a<u<bthen a<uandu<barcsin(0.5)+2πn<4xand4x<π−arcsin(0.5)+2πn
arcsin(0.5)+2πn<4x:x>24π​+2πn​
arcsin(0.5)+2πn<4x
Switch sides4x>arcsin(0.5)+2πn
Simplify arcsin(0.5)+2πn:6π​+2πn
arcsin(0.5)+2πn
arcsin(0.5)=6π​
arcsin(0.5)
=arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=6π​
=6π​+2πn
4x>6π​+2πn
Divide both sides by 4
4x>6π​+2πn
Divide both sides by 444x​>46π​​+42πn​
Simplify
44x​>46π​​+42πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 46π​​+42πn​:24π​+2πn​
46π​​+42πn​
46π​​=24π​
46π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅4π​
Multiply the numbers: 6⋅4=24=24π​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
=24π​+2πn​
x>24π​+2πn​
x>24π​+2πn​
x>24π​+2πn​
4x<π−arcsin(0.5)+2πn:x<245π​+2π​n
4x<π−arcsin(0.5)+2πn
Simplify π−arcsin(0.5)+2πn:π−6π​+2πn
π−arcsin(0.5)+2πn
arcsin(0.5)=6π​
arcsin(0.5)
=arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=6π​
=π−6π​+2πn
4x<π−6π​+2πn
Divide both sides by 4
4x<π−6π​+2πn
Divide both sides by 444x​<4π​−46π​​+42πn​
Simplify
44x​<4π​−46π​​+42πn​
Simplify 44x​:x
44x​
Divide the numbers: 44​=1=x
Simplify 4π​−46π​​+42πn​:4π​−24π​+2πn​
4π​−46π​​+42πn​
46π​​=24π​
46π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅4π​
Multiply the numbers: 6⋅4=24=24π​
42πn​=2πn​
42πn​
Cancel the common factor: 2=2πn​
=4π​−24π​+2πn​
x<4π​−24π​+2πn​
x<4π​−24π​+2πn​
Simplify 4π​−24π​:245π​
4π​−24π​
Least Common Multiplier of 4,24:24
4,24
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 24:2⋅2⋅2⋅3
24
24divides by 224=12⋅2=2⋅12
12divides by 212=6⋅2=2⋅2⋅6
6divides by 26=3⋅2=2⋅2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 24=2⋅2⋅2⋅3
Multiply the numbers: 2⋅2⋅2⋅3=24=24
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 24
For 4π​:multiply the denominator and numerator by 64π​=4⋅6π6​=24π6​
=24π6​−24π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=24π6−π​
Add similar elements: 6π−π=5π=245π​
x<245π​+2π​n
x<245π​+2π​n
Combine the intervalsx>24π​+2πn​andx<245π​+2π​n
Merge Overlapping Intervals24π​+2π​n<x<245π​+2π​n

Popular Examples

sin(180-x)<02sin(2x-30)+1>0cos(x)<-1/2tan^2(x)-3tan(x)+2<0solvefor x,arctan(|x-y|)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024