Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(θ)-4/5 cos(θ)>0csc(θ)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(θ)−54​cos(θ)>0csc(θ)

Solution

0.58745…+2πn<θ<2π​+2πnorπ−0.58745…+2πn<θ<23π​+2πn
+2
Interval Notation
(0.58745…+2πn,2π​+2πn)∪(π−0.58745…+2πn,23π​+2πn)
Decimal
0.58745…+2πn<θ<1.57079…+2πnor2.55413…+2πn<θ<4.71238…+2πn
Solution steps
tan(θ)−54​cos(θ)>0⋅csc(θ)
Move 0csc(θ)to the left side
tan(θ)−54​cos(θ)>0⋅csc(θ)
Subtract 0csc(θ) from both sidestan(θ)−54​cos(θ)−0⋅csc(θ)>0⋅csc(θ)−0⋅csc(θ)
tan(θ)−54​cos(θ)−0⋅csc(θ)>0⋅csc(θ)−0⋅csc(θ)
Refine
Simplify tan(θ)−54​cos(θ)−0⋅csc(θ):tan(θ)−54​cos(θ)
tan(θ)−54​cos(θ)−0⋅csc(θ)
Apply rule 0⋅a=0=tan(θ)−54​cos(θ)−0
tan(θ)−54​cos(θ)−0=tan(θ)−54​cos(θ)=tan(θ)−54​cos(θ)
0⋅csc(θ)−0⋅csc(θ)
Add similar elements: 0csc(θ)−0csc(θ)>0
=0
tan(θ)−54​cos(θ)>0
tan(θ)−54​cos(θ)>0
tan(θ)−54​cos(θ)>0
Periodicity of tan(θ)−54​cos(θ):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodstan(θ),54​cos(θ)
Periodicity of tan(θ):π
Periodicity of tan(x)is π=π
Periodicity of 54​cos(θ):2π
Periodicity of a⋅cos(bx+c)+d=∣b∣periodicityofcos(x)​Periodicity of cos(x)is 2π=∣1∣2π​
Simplify=2π
Combine periods: π,2π
=2π
Express with sin, cos
tan(θ)−54​cos(θ)>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(θ)sin(θ)​−54​cos(θ)>0
cos(θ)sin(θ)​−54​cos(θ)>0
Simplify cos(θ)sin(θ)​−54​cos(θ):5cos(θ)5sin(θ)−4cos2(θ)​
cos(θ)sin(θ)​−54​cos(θ)
Multiply 54​cos(θ):54cos(θ)​
54​cos(θ)
Multiply fractions: a⋅cb​=ca⋅b​=54cos(θ)​
=cos(θ)sin(θ)​−54cos(θ)​
Least Common Multiplier of cos(θ),5:5cos(θ)
cos(θ),5
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(θ) or 5=5cos(θ)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 5cos(θ)
For cos(θ)sin(θ)​:multiply the denominator and numerator by 5cos(θ)sin(θ)​=cos(θ)⋅5sin(θ)⋅5​
For 54cos(θ)​:multiply the denominator and numerator by cos(θ)54cos(θ)​=5cos(θ)4cos(θ)cos(θ)​=5cos(θ)4cos2(θ)​
=cos(θ)⋅5sin(θ)⋅5​−5cos(θ)4cos2(θ)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=5cos(θ)sin(θ)⋅5−4cos2(θ)​
5cos(θ)5sin(θ)−4cos2(θ)​>0
Find the zeroes and undifined points of 5cos(θ)5sin(θ)−4cos2(θ)​for 0≤θ<2π
To find the zeroes, set the inequality to zero5cos(θ)5sin(θ)−4cos2(θ)​=0
5cos(θ)5sin(θ)−4cos2(θ)​=0,0≤θ<2π:θ=0.58745…,θ=π−0.58745…
5cos(θ)5sin(θ)−4cos2(θ)​=0,0≤θ<2π
g(x)f(x)​=0⇒f(x)=05sin(θ)−4cos2(θ)=0
Rewrite using trig identities
−4cos2(θ)+5sin(θ)
Use the Pythagorean identity: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=−4(1−sin2(θ))+5sin(θ)
−(1−sin2(θ))⋅4+5sin(θ)=0
Solve by substitution
−(1−sin2(θ))⋅4+5sin(θ)=0
Let: sin(θ)=u−(1−u2)⋅4+5u=0
−(1−u2)⋅4+5u=0:u=8−5+89​​,u=8−5−89​​
−(1−u2)⋅4+5u=0
Expand −(1−u2)⋅4+5u:−4+4u2+5u
−(1−u2)⋅4+5u
=−4(1−u2)+5u
Expand −4(1−u2):−4+4u2
−4(1−u2)
Apply the distributive law: a(b−c)=ab−aca=−4,b=1,c=u2=−4⋅1−(−4)u2
Apply minus-plus rules−(−a)=a=−4⋅1+4u2
Multiply the numbers: 4⋅1=4=−4+4u2
=−4+4u2+5u
−4+4u2+5u=0
Write in the standard form ax2+bx+c=04u2+5u−4=0
Solve with the quadratic formula
4u2+5u−4=0
Quadratic Equation Formula:
For a=4,b=5,c=−4u1,2​=2⋅4−5±52−4⋅4(−4)​​
u1,2​=2⋅4−5±52−4⋅4(−4)​​
52−4⋅4(−4)​=89​
52−4⋅4(−4)​
Apply rule −(−a)=a=52+4⋅4⋅4​
Multiply the numbers: 4⋅4⋅4=64=52+64​
52=25=25+64​
Add the numbers: 25+64=89=89​
u1,2​=2⋅4−5±89​​
Separate the solutionsu1​=2⋅4−5+89​​,u2​=2⋅4−5−89​​
u=2⋅4−5+89​​:8−5+89​​
2⋅4−5+89​​
Multiply the numbers: 2⋅4=8=8−5+89​​
u=2⋅4−5−89​​:8−5−89​​
2⋅4−5−89​​
Multiply the numbers: 2⋅4=8=8−5−89​​
The solutions to the quadratic equation are:u=8−5+89​​,u=8−5−89​​
Substitute back u=sin(θ)sin(θ)=8−5+89​​,sin(θ)=8−5−89​​
sin(θ)=8−5+89​​,sin(θ)=8−5−89​​
sin(θ)=8−5+89​​,0≤θ<2π:θ=arcsin(889​−5​),θ=π−arcsin(889​−5​)
sin(θ)=8−5+89​​,0≤θ<2π
Apply trig inverse properties
sin(θ)=8−5+89​​
General solutions for sin(θ)=8−5+89​​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnθ=arcsin(8−5+89​​)+2πn,θ=π−arcsin(8−5+89​​)+2πn
θ=arcsin(8−5+89​​)+2πn,θ=π−arcsin(8−5+89​​)+2πn
Solutions for the range 0≤θ<2πθ=arcsin(889​−5​),θ=π−arcsin(889​−5​)
sin(θ)=8−5−89​​,0≤θ<2π:No Solution
sin(θ)=8−5−89​​,0≤θ<2π
−1≤sin(x)≤1NoSolution
Combine all the solutionsθ=arcsin(889​−5​),θ=π−arcsin(889​−5​)
Show solutions in decimal formθ=0.58745…,θ=π−0.58745…
Find the undefined points:θ=2π​,θ=23π​
Find the zeros of the denominator5cos(θ)=0
Divide both sides by 5
5cos(θ)=0
Divide both sides by 555cos(θ)​=50​
Simplifycos(θ)=0
cos(θ)=0
General solutions for cos(θ)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=2π​+2πn,θ=23π​+2πn
θ=2π​+2πn,θ=23π​+2πn
Solutions for the range 0≤θ<2πθ=2π​,θ=23π​
0.58745…,2π​,π−0.58745…,23π​
Identify the intervals0<θ<0.58745…,0.58745…<θ<2π​,2π​<θ<π−0.58745…,π−0.58745…<θ<23π​,23π​<θ<2π
Summarize in a table:5sin(θ)−4cos2(θ)cos(θ)5cos(θ)5sin(θ)−4cos2(θ)​​θ=0−+−​0<θ<0.58745…−+−​θ=0.58745…0+0​0.58745…<θ<2π​+++​θ=2π​+0Undefined​2π​<θ<π−0.58745…+−−​θ=π−0.58745…0−0​π−0.58745…<θ<23π​−−+​θ=23π​−0Undefined​23π​<θ<2π−+−​θ=2π−+−​​
Identify the intervals that satisfy the required condition: >00.58745…<θ<2π​orπ−0.58745…<θ<23π​
Apply the periodicity of tan(θ)−54​cos(θ)0.58745…+2πn<θ<2π​+2πnorπ−0.58745…+2πn<θ<23π​+2πn

Popular Examples

cot(x)>-1/(sqrt(3))(cos(x)-1.5708)(cos(x)+1.5708)<= 0cot(pi-x)<-1cos(2x)-cos(x)>01-sin(x)<1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024