Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)<sin^2(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)<sin2(x)

Solution

−π+2πn<x<2πn
+2
Interval Notation
(−π+2πn,2πn)
Decimal
−3.14159…+2πn<x<2πn
Solution steps
sin(x)<sin2(x)
Let: u=sin(x)u<u2
u<u2:u<0oru>1
u<u2
Rewrite in standard form
u<u2
Subtract u2 from both sidesu−u2<u2−u2
Simplifyu−u2<0
u−u2<0
Factor u−u2:−u(u−1)
u−u2
Apply exponent rule: ab+c=abacu2=uu=−uu+u
Factor out common term −u=−u(u−1)
−u(u−1)<0
Multiply both sides by −1 (reverse the inequality)(−u(u−1))(−1)>0⋅(−1)
Simplifyu(u−1)>0
Identify the intervals
Find the signs of the factors of u(u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Summarize in a table:uu−1u(u−1)​u<0−−+​u=00−0​0<u<1+−−​u=1+00​u>1+++​​
Identify the intervals that satisfy the required condition: >0u<0oru>1
u<0oru>1
u<0oru>1
Substitute back u=sin(x)sin(x)<0orsin(x)>1
sin(x)<0:−π+2πn<x<2πn
sin(x)<0
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(0)+2πn<x<arcsin(0)+2πn
Simplify −π−arcsin(0):−π
−π−arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−0
−π−0=−π=−π
Simplify arcsin(0):0
arcsin(0)
Use the following trivial identity:arcsin(0)=0x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=0
−π+2πn<x<0+2πn
Simplify−π+2πn<x<2πn
sin(x)>1:False for all x∈R
sin(x)>1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)>1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy>1and−1≤y≤1
Merge Overlapping Intervals
y>1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervals−π+2πn<x<2πnorFalseforallx∈R
Merge Overlapping Intervals−π+2πn<x<2πn

Popular Examples

tan(x)<= 0cos(2t)>090-arctan((3x)/4)>= 40cos(2θ)-3sin(θ)-2>0(1-2sin(x))(2cos(x)+sqrt(3))<= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024