Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2cos^3(3x)-cos(3x)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2cos3(3x)−cos(3x)<0

Solution

12π​+32π​n<x<6π​+32π​nor4π​+32π​n<x<125π​+32π​nor2π​+32π​n<x<127π​+32π​n
+2
Interval Notation
(12π​+32π​n,6π​+32π​n)∪(4π​+32π​n,125π​+32π​n)∪(2π​+32π​n,127π​+32π​n)
Decimal
0.26179…+32π​n<x<0.52359…+32π​nor0.78539…+32π​n<x<1.30899…+32π​nor1.57079…+32π​n<x<1.83259…+32π​n
Solution steps
2cos3(3x)−cos(3x)<0
Let: u=cos(3x)2u3−u<0
2u3−u<0:u<−22​​or0<u<22​​
2u3−u<0
Factor 2u3−u:u(2​u+1)(2​u−1)
2u3−u
Factor out common term u:u(2u2−1)
2u3−u
Apply exponent rule: ab+c=abacu3=u2u=2u2u−u
Factor out common term u=u(2u2−1)
=u(2u2−1)
Factor 2u2−1:(2​u+1)(2​u−1)
2u2−1
Rewrite 2u2−1 as (2​u)2−12
2u2−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2u2−1
Rewrite 1 as 12=(2​)2u2−12
Apply exponent rule: ambm=(ab)m(2​)2u2=(2​u)2=(2​u)2−12
=(2​u)2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​u)2−12=(2​u+1)(2​u−1)=(2​u+1)(2​u−1)
=u(2​u+1)(2​u−1)
u(2​u+1)(2​u−1)<0
Identify the intervals
Find the signs of the factors of u(2​u+1)(2​u−1)
Find the signs of u
u=0
u<0
u>0
Find the signs of 2​u+1
2​u+1=0:u=−22​​
2​u+1=0
Move 1to the right side
2​u+1=0
Subtract 1 from both sides2​u+1−1=0−1
Simplify2​u=−1
2​u=−1
Divide both sides by 2​
2​u=−1
Divide both sides by 2​2​2​u​=2​−1​
Simplify
2​2​u​=2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u=−22​​
u=−22​​
u=−22​​
2​u+1<0:u<−22​​
2​u+1<0
Move 1to the right side
2​u+1<0
Subtract 1 from both sides2​u+1−1<0−1
Simplify2​u<−1
2​u<−1
Divide both sides by 2​
2​u<−1
Divide both sides by 2​2​2​u​<2​−1​
Simplify
2​2​u​<2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u<−22​​
u<−22​​
u<−22​​
2​u+1>0:u>−22​​
2​u+1>0
Move 1to the right side
2​u+1>0
Subtract 1 from both sides2​u+1−1>0−1
Simplify2​u>−1
2​u>−1
Divide both sides by 2​
2​u>−1
Divide both sides by 2​2​2​u​>2​−1​
Simplify
2​2​u​>2​−1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
u>−22​​
u>−22​​
u>−22​​
Find the signs of 2​u−1
2​u−1=0:u=22​​
2​u−1=0
Move 1to the right side
2​u−1=0
Add 1 to both sides2​u−1+1=0+1
Simplify2​u=1
2​u=1
Divide both sides by 2​
2​u=1
Divide both sides by 2​2​2​u​=2​1​
Simplify
2​2​u​=2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u=22​​
u=22​​
u=22​​
2​u−1<0:u<22​​
2​u−1<0
Move 1to the right side
2​u−1<0
Add 1 to both sides2​u−1+1<0+1
Simplify2​u<1
2​u<1
Divide both sides by 2​
2​u<1
Divide both sides by 2​2​2​u​<2​1​
Simplify
2​2​u​<2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u<22​​
u<22​​
u<22​​
2​u−1>0:u>22​​
2​u−1>0
Move 1to the right side
2​u−1>0
Add 1 to both sides2​u−1+1>0+1
Simplify2​u>1
2​u>1
Divide both sides by 2​
2​u>1
Divide both sides by 2​2​2​u​>2​1​
Simplify
2​2​u​>2​1​
Simplify 2​2​u​:u
2​2​u​
Cancel the common factor: 2​=u
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
u>22​​
u>22​​
u>22​​
Summarize in a table:u2​u+12​u−1u(2​u+1)(2​u−1)​u<−22​​−−−−​u=−22​​−0−0​−22​​<u<0−+−+​u=00+−0​0<u<22​​++−−​u=22​​++00​u>22​​++++​​
Identify the intervals that satisfy the required condition: <0u<−22​​or0<u<22​​
u<−22​​or0<u<22​​
u<−22​​or0<u<22​​
Substitute back u=cos(3x)cos(3x)<−22​​or0<cos(3x)<22​​
cos(3x)<−22​​:4π​+32π​n<x<125π​+32π​n
cos(3x)<−22​​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(−22​​)+2πn<3x<2π−arccos(−22​​)+2πn
If a<u<bthen a<uandu<barccos(−22​​)+2πn<3xand3x<2π−arccos(−22​​)+2πn
arccos(−22​​)+2πn<3x:x>4π​+32πn​
arccos(−22​​)+2πn<3x
Switch sides3x>arccos(−22​​)+2πn
Simplify arccos(−22​​)+2πn:43π​+2πn
arccos(−22​​)+2πn
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=43π​+2πn
3x>43π​+2πn
Divide both sides by 3
3x>43π​+2πn
Divide both sides by 333x​>343π​​+32πn​
Simplify
33x​>343π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 343π​​+32πn​:4π​+32πn​
343π​​+32πn​
343π​​=4π​
343π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅33π​
Multiply the numbers: 4⋅3=12=123π​
Cancel the common factor: 3=4π​
=4π​+32πn​
x>4π​+32πn​
x>4π​+32πn​
x>4π​+32πn​
3x<2π−arccos(−22​​)+2πn:x<125π​+32π​n
3x<2π−arccos(−22​​)+2πn
Simplify 2π−arccos(−22​​)+2πn:2π−43π​+2πn
2π−arccos(−22​​)+2πn
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−43π​+2πn
3x<2π−43π​+2πn
Divide both sides by 3
3x<2π−43π​+2πn
Divide both sides by 333x​<32π​−343π​​+32πn​
Simplify
33x​<32π​−343π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​−343π​​+32πn​:32π​−4π​+32πn​
32π​−343π​​+32πn​
343π​​=4π​
343π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅33π​
Multiply the numbers: 4⋅3=12=123π​
Cancel the common factor: 3=4π​
=32π​−4π​+32πn​
x<32π​−4π​+32πn​
x<32π​−4π​+32πn​
Simplify 32π​−4π​:125π​
32π​−4π​
Least Common Multiplier of 3,4:12
3,4
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Multiply each factor the greatest number of times it occurs in either 3 or 4=3⋅2⋅2
Multiply the numbers: 3⋅2⋅2=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 32π​:multiply the denominator and numerator by 432π​=3⋅42π4​=128π​
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
=128π​−12π3​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=128π−π3​
Add similar elements: 8π−3π=5π=125π​
x<125π​+32π​n
x<125π​+32π​n
Combine the intervalsx>4π​+32πn​andx<125π​+32π​n
Merge Overlapping Intervals4π​+32π​n<x<125π​+32π​n
0<cos(3x)<22​​:12π​+32π​n<x<6π​+32π​nor2π​+32π​n<x<127π​+32π​n
0<cos(3x)<22​​
If a<u<bthen a<uandu<b0<cos(3x)andcos(3x)<22​​
0<cos(3x):−6π​+32π​n<x<6π​+32π​n
0<cos(3x)
Switch sidescos(3x)>0
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(0)+2πn<3x<arccos(0)+2πn
If a<u<bthen a<uandu<b−arccos(0)+2πn<3xand3x<arccos(0)+2πn
−arccos(0)+2πn<3x:x>−6π​+32πn​
−arccos(0)+2πn<3x
Switch sides3x>−arccos(0)+2πn
Simplify −arccos(0)+2πn:−2π​+2πn
−arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​+2πn
3x>−2π​+2πn
Divide both sides by 3
3x>−2π​+2πn
Divide both sides by 333x​>−32π​​+32πn​
Simplify
33x​>−32π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify −32π​​+32πn​:−6π​+32πn​
−32π​​+32πn​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=−6π​+32πn​
x>−6π​+32πn​
x>−6π​+32πn​
x>−6π​+32πn​
3x<arccos(0)+2πn:x<6π​+32πn​
3x<arccos(0)+2πn
Simplify arccos(0)+2πn:2π​+2πn
arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​+2πn
3x<2π​+2πn
Divide both sides by 3
3x<2π​+2πn
Divide both sides by 333x​<32π​​+32πn​
Simplify
33x​<32π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​​+32πn​:6π​+32πn​
32π​​+32πn​
32π​​=6π​
32π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅3π​
Multiply the numbers: 2⋅3=6=6π​
=6π​+32πn​
x<6π​+32πn​
x<6π​+32πn​
x<6π​+32πn​
Combine the intervalsx>−6π​+32πn​andx<6π​+32πn​
Merge Overlapping Intervals−6π​+32π​n<x<6π​+32π​n
cos(3x)<22​​:12π​+32π​n<x<127π​+32π​n
cos(3x)<22​​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(22​​)+2πn<3x<2π−arccos(22​​)+2πn
If a<u<bthen a<uandu<barccos(22​​)+2πn<3xand3x<2π−arccos(22​​)+2πn
arccos(22​​)+2πn<3x:x>12π​+32πn​
arccos(22​​)+2πn<3x
Switch sides3x>arccos(22​​)+2πn
Simplify arccos(22​​)+2πn:4π​+2πn
arccos(22​​)+2πn
Use the following trivial identity:arccos(22​​)=4π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=4π​+2πn
3x>4π​+2πn
Divide both sides by 3
3x>4π​+2πn
Divide both sides by 333x​>34π​​+32πn​
Simplify
33x​>34π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 34π​​+32πn​:12π​+32πn​
34π​​+32πn​
34π​​=12π​
34π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅3π​
Multiply the numbers: 4⋅3=12=12π​
=12π​+32πn​
x>12π​+32πn​
x>12π​+32πn​
x>12π​+32πn​
3x<2π−arccos(22​​)+2πn:x<127π​+32π​n
3x<2π−arccos(22​​)+2πn
Simplify 2π−arccos(22​​)+2πn:2π−4π​+2πn
2π−arccos(22​​)+2πn
Use the following trivial identity:arccos(22​​)=4π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−4π​+2πn
3x<2π−4π​+2πn
Divide both sides by 3
3x<2π−4π​+2πn
Divide both sides by 333x​<32π​−34π​​+32πn​
Simplify
33x​<32π​−34π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 32π​−34π​​+32πn​:32π​−12π​+32πn​
32π​−34π​​+32πn​
34π​​=12π​
34π​​
Apply the fraction rule: acb​​=c⋅ab​=4⋅3π​
Multiply the numbers: 4⋅3=12=12π​
=32π​−12π​+32πn​
x<32π​−12π​+32πn​
x<32π​−12π​+32πn​
Simplify 32π​−12π​:127π​
32π​−12π​
Least Common Multiplier of 3,12:12
3,12
Least Common Multiplier (LCM)
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Prime factorization of 12:2⋅2⋅3
12
12divides by 212=6⋅2=2⋅6
6divides by 26=3⋅2=2⋅2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3
Multiply each factor the greatest number of times it occurs in either 3 or 12=3⋅2⋅2
Multiply the numbers: 3⋅2⋅2=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 32π​:multiply the denominator and numerator by 432π​=3⋅42π4​=128π​
=128π​−12π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=128π−π​
Add similar elements: 8π−π=7π=127π​
x<127π​+32π​n
x<127π​+32π​n
Combine the intervalsx>12π​+32πn​andx<127π​+32π​n
Merge Overlapping Intervals12π​+32π​n<x<127π​+32π​n
Combine the intervals−6π​+32π​n<x<6π​+32π​nand12π​+32π​n<x<127π​+32π​n
Merge Overlapping Intervals12π​+32π​n<x<6π​+32π​nor2π​+32π​n<x<127π​+32π​n
Combine the intervals4π​+32π​n<x<125π​+32π​nor(12π​+32π​n<x<6π​+32π​nor2π​+32π​n<x<127π​+32π​n)
Merge Overlapping Intervals12π​+32π​n<x<6π​+32π​nor4π​+32π​n<x<125π​+32π​nor2π​+32π​n<x<127π​+32π​n

Popular Examples

0<= sin(pix)2cos^2(x)+sin(x)>20.5<= sin(30t)sin(x)-sqrt(3)cos(x)>sqrt(2)cos(x)<1+sin(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024