Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/((sin(x))^2)< 4/3 ,0<x<12

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sin(x))21​<34​,0∘<x<12∘

Solution

3π​+2πn<x<32π​+2πnor−32π​+2πn<x<−3π​+2πn
+2
Interval Notation
(3π​+2πn,32π​+2πn)∪(−32π​+2πn,−3π​+2πn)
Decimal
1.04719…+2πn<x<2.09439…+2πnor−2.09439…+2πn<x<−1.04719…+2πn
Solution steps
(sin(x))21​<34​,0∘<x<12∘
Rewrite in standard form
sin2(x)1​<34​
Subtract 34​ from both sidessin2(x)1​−34​<34​−34​
Simplifysin2(x)1​−34​<0
Simplify sin2(x)1​−34​:3sin2(x)3−4sin2(x)​
sin2(x)1​−34​
Least Common Multiplier of sin2(x),3:3sin2(x)
sin2(x),3
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in sin2(x) or 3=3sin2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3sin2(x)
For sin2(x)1​:multiply the denominator and numerator by 3sin2(x)1​=sin2(x)⋅31⋅3​=3sin2(x)3​
For 34​:multiply the denominator and numerator by sin2(x)34​=3sin2(x)4sin2(x)​
=3sin2(x)3​−3sin2(x)4sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3sin2(x)3−4sin2(x)​
3sin2(x)3−4sin2(x)​<0
Multiply both sides by 33sin2(x)3(3−4sin2(x))​<0⋅3
Simplifysin2(x)3−4sin2(x)​<0
sin2(x)3−4sin2(x)​<0
Factor sin2(x)3−4sin2(x)​:sin2(x)−(2sin(x)+3​)(2sin(x)−3​)​
sin2(x)3−4sin2(x)​
Factor −4sin2(x)+3:−(2sin(x)+3​)(2sin(x)−3​)
−4sin2(x)+3
Factor out common term −1=−(4sin2(x)−3)
Factor 4sin2(x)−3:(2sin(x)+3​)(2sin(x)−3​)
4sin2(x)−3
Rewrite 4sin2(x)−3 as (2sin(x))2−(3​)2
4sin2(x)−3
Rewrite 4 as 22=22sin2(x)−3
Apply radical rule: a=(a​)23=(3​)2=22sin2(x)−(3​)2
Apply exponent rule: ambm=(ab)m22sin2(x)=(2sin(x))2=(2sin(x))2−(3​)2
=(2sin(x))2−(3​)2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2sin(x))2−(3​)2=(2sin(x)+3​)(2sin(x)−3​)=(2sin(x)+3​)(2sin(x)−3​)
=−(2sin(x)+3​)(2sin(x)−3​)
=sin2(x)−(2sin(x)+3​)(2sin(x)−3​)​
sin2(x)−(2sin(x)+3​)(2sin(x)−3​)​<0
Multiply both sides by −1 (reverse the inequality)sin2(x)(−(2sin(x)+3​)(2sin(x)−3​))(−1)​>0⋅(−1)
Simplifysin2(x)(2sin(x)+3​)(2sin(x)−3​)​>0
Identify the intervals
Find the signs of the factors of sin2(x)(2sin(x)+3​)(2sin(x)−3​)​
Find the signs of 2sin(x)+3​
2sin(x)+3​=0:sin(x)=−23​​
2sin(x)+3​=0
Move 3​to the right side
2sin(x)+3​=0
Subtract 3​ from both sides2sin(x)+3​−3​=0−3​
Simplify2sin(x)=−3​
2sin(x)=−3​
Divide both sides by 2
2sin(x)=−3​
Divide both sides by 222sin(x)​=2−3​​
Simplifysin(x)=−23​​
sin(x)=−23​​
2sin(x)+3​<0:sin(x)<−23​​
2sin(x)+3​<0
Move 3​to the right side
2sin(x)+3​<0
Subtract 3​ from both sides2sin(x)+3​−3​<0−3​
Simplify2sin(x)<−3​
2sin(x)<−3​
Divide both sides by 2
2sin(x)<−3​
Divide both sides by 222sin(x)​<2−3​​
Simplifysin(x)<−23​​
sin(x)<−23​​
2sin(x)+3​>0:sin(x)>−23​​
2sin(x)+3​>0
Move 3​to the right side
2sin(x)+3​>0
Subtract 3​ from both sides2sin(x)+3​−3​>0−3​
Simplify2sin(x)>−3​
2sin(x)>−3​
Divide both sides by 2
2sin(x)>−3​
Divide both sides by 222sin(x)​>2−3​​
Simplifysin(x)>−23​​
sin(x)>−23​​
Find the signs of 2sin(x)−3​
2sin(x)−3​=0:sin(x)=23​​
2sin(x)−3​=0
Move 3​to the right side
2sin(x)−3​=0
Add 3​ to both sides2sin(x)−3​+3​=0+3​
Simplify2sin(x)=3​
2sin(x)=3​
Divide both sides by 2
2sin(x)=3​
Divide both sides by 222sin(x)​=23​​
Simplifysin(x)=23​​
sin(x)=23​​
2sin(x)−3​<0:sin(x)<23​​
2sin(x)−3​<0
Move 3​to the right side
2sin(x)−3​<0
Add 3​ to both sides2sin(x)−3​+3​<0+3​
Simplify2sin(x)<3​
2sin(x)<3​
Divide both sides by 2
2sin(x)<3​
Divide both sides by 222sin(x)​<23​​
Simplifysin(x)<23​​
sin(x)<23​​
2sin(x)−3​>0:sin(x)>23​​
2sin(x)−3​>0
Move 3​to the right side
2sin(x)−3​>0
Add 3​ to both sides2sin(x)−3​+3​>0+3​
Simplify2sin(x)>3​
2sin(x)>3​
Divide both sides by 2
2sin(x)>3​
Divide both sides by 222sin(x)​>23​​
Simplifysin(x)>23​​
sin(x)>23​​
Find the signs of sin2(x)
sin2(x)=0:sin(x)=0
sin2(x)=0
Apply rule xn=0⇒x=0
sin(x)=0
sin2(x)>0:sin(x)<0orsin(x)>0
sin2(x)>0
For un>0, if nis even then u<0oru>0
sin(x)<0orsin(x)>0
Find singularity points
Find the zeros of the denominator sin2(x):No Solution
sin2(x)=0
The sides are not equalNoSolution
Summarize in a table:2sin(x)+3​2sin(x)−3​sin2(x)sin2(x)(2sin(x)+3​)(2sin(x)−3​)​​sin(x)<−23​​−−++​sin(x)=−23​​0−+0​−23​​<sin(x)<0+−+−​sin(x)=0+−0Undefined​0<sin(x)<23​​+−+−​sin(x)=23​​+0+0​sin(x)>23​​++++​​
Identify the intervals that satisfy the required condition: >0sin(x)<−23​​orsin(x)>23​​
sin(x)<−23​​orsin(x)>23​​
sin(x)<−23​​:−32π​+2πn<x<−3π​+2πn
sin(x)<−23​​
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(−23​​)+2πn<x<arcsin(−23​​)+2πn
Simplify −π−arcsin(−23​​):−32π​
−π−arcsin(−23​​)
arcsin(−23​​)=−3π​
arcsin(−23​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−23​​)=−arcsin(23​​)=−arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​
arcsin(23​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=3π​
=−3π​
=−π−(−3π​)
Simplify
−π−(−3π​)
Apply rule −(−a)=a=−π+3π​
Convert element to fraction: π=3π3​=−3π3​+3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3−π3+π​
Add similar elements: −3π+π=−2π=3−2π​
Apply the fraction rule: b−a​=−ba​=−32π​
=−32π​
Simplify arcsin(−23​​):−3π​
arcsin(−23​​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−23​​)=−arcsin(23​​)=−arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​
arcsin(23​​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=3π​
=−3π​
−32π​+2πn<x<−3π​+2πn
sin(x)>23​​:3π​+2πn<x<32π​+2πn
sin(x)>23​​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(23​​)+2πn<x<π−arcsin(23​​)+2πn
Simplify arcsin(23​​):3π​
arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=3π​
Simplify π−arcsin(23​​):32π​
π−arcsin(23​​)
Use the following trivial identity:arcsin(23​​)=3π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−3π​
Simplify
π−3π​
Convert element to fraction: π=3π3​=3π3​−3π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3π3−π​
Add similar elements: 3π−π=2π=32π​
=32π​
3π​+2πn<x<32π​+2πn
Combine the intervals−32π​+2πn<x<−3π​+2πnor3π​+2πn<x<32π​+2πn
Merge Overlapping Intervals3π​+2πn<x<32π​+2πnor−32π​+2πn<x<−3π​+2πn

Popular Examples

1/(sin(2x))< 1/(sin(x)),0<= x<= pi2tan(2x)<= 3tan(x)1/((sin(x))^2)< 4/3 ,0<x< pi/(15)cos^2(x)<sin^2(x)sin(x-45)> 1/2 sqrt(3),0<= x<= 360
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024