Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(cos(x)(1+tan(x)))/(cos(x)(1-tan(x)))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)(1−tan(x))cos(x)(1+tan(x))​>0

Solution

πn≤x<4π​+πnor43π​+πn<x≤π+πn
+2
Interval Notation
[πn,4π​+πn)∪(43π​+πn,π+πn]
Decimal
πn≤x<0.78539…+πnor2.35619…+πn<x≤3.14159…+πn
Solution steps
cos(x)(1−tan(x))cos(x)(1+tan(x))​>0
Periodicity of cos(x)(1−tan(x))cos(x)(1+tan(x))​:π
cos(x)(1−tan(x))cos(x)(1+tan(x))​is composed of the following functions and periods:cos(x)with periodicity of 2π
The compound periodicity is:=π
Express with sin, cos
cos(x)(1−tan(x))cos(x)(1+tan(x))​>0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x)(1−cos(x)sin(x)​)cos(x)(1+cos(x)sin(x)​)​>0
cos(x)(1−cos(x)sin(x)​)cos(x)(1+cos(x)sin(x)​)​>0
Simplify cos(x)(1−cos(x)sin(x)​)cos(x)(1+cos(x)sin(x)​)​:cos(x)−sin(x)cos(x)+sin(x)​
cos(x)(1−cos(x)sin(x)​)cos(x)(1+cos(x)sin(x)​)​
Cancel the common factor: cos(x)=1−cos(x)sin(x)​1+cos(x)sin(x)​​
Join 1−cos(x)sin(x)​:cos(x)cos(x)−sin(x)​
1−cos(x)sin(x)​
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1⋅cos(x)​−cos(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1⋅cos(x)−sin(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)cos(x)−sin(x)​
=cos(x)cos(x)−sin(x)​1+cos(x)sin(x)​​
Join 1+cos(x)sin(x)​:cos(x)cos(x)+sin(x)​
1+cos(x)sin(x)​
Convert element to fraction: 1=cos(x)1cos(x)​=cos(x)1⋅cos(x)​+cos(x)sin(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)1⋅cos(x)+sin(x)​
Multiply: 1⋅cos(x)=cos(x)=cos(x)cos(x)+sin(x)​
=cos(x)cos(x)−sin(x)​cos(x)cos(x)+sin(x)​​
Divide fractions: dc​ba​​=b⋅ca⋅d​=cos(x)(cos(x)−sin(x))(cos(x)+sin(x))cos(x)​
Cancel the common factor: cos(x)=cos(x)−sin(x)cos(x)+sin(x)​
cos(x)−sin(x)cos(x)+sin(x)​>0
Find the zeroes and undifined points of cos(x)−sin(x)cos(x)+sin(x)​for 0≤x<π
To find the zeroes, set the inequality to zerocos(x)−sin(x)cos(x)+sin(x)​=0
cos(x)−sin(x)cos(x)+sin(x)​=0,0≤x<π:x=43π​
cos(x)−sin(x)cos(x)+sin(x)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=0cos(x)+sin(x)=0
Rewrite using trig identities
cos(x)+sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)+sin(x)​=cos(x)0​
Simplify1+cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+tan(x)=0
1+tan(x)=0
Move 1to the right side
1+tan(x)=0
Subtract 1 from both sides1+tan(x)−1=0−1
Simplifytan(x)=−1
tan(x)=−1
General solutions for tan(x)=−1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
Solutions for the range 0≤x<πx=43π​
Find the undefined points:x=4π​
Find the zeros of the denominatorcos(x)−sin(x)=0
Rewrite using trig identities
cos(x)−sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−sin(x)​=cos(x)0​
Simplify1−cos(x)sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−tan(x)=0
1−tan(x)=0
Move 1to the right side
1−tan(x)=0
Subtract 1 from both sides1−tan(x)−1=0−1
Simplify−tan(x)=−1
−tan(x)=−1
Divide both sides by −1
−tan(x)=−1
Divide both sides by −1−1−tan(x)​=−1−1​
Simplifytan(x)=1
tan(x)=1
General solutions for tan(x)=1
tan(x) periodicity table with πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=4π​+πn
x=4π​+πn
Solutions for the range 0≤x<πx=4π​
4π​,43π​
Identify the intervals0<x<4π​,4π​<x<43π​,43π​<x<π
Summarize in a table:cos(x)+sin(x)cos(x)−sin(x)cos(x)−sin(x)cos(x)+sin(x)​​x=0+++​0<x<4π​+++​x=4π​+0Undefined​4π​<x<43π​+−−​x=43π​0−0​43π​<x<π−−+​x=π−−+​​
Identify the intervals that satisfy the required condition: >0x=0or0<x<4π​or43π​<x<πorx=π
Merge Overlapping Intervals
0≤x<4π​or43π​<x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<4π​
0≤x<4π​
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or43π​<x<π
0≤x<4π​or43π​<x<π
The union of two intervals is the set of numbers which are in either interval
0≤x<4π​or43π​<x<πorx=π
0≤x<4π​or43π​<x≤π
0≤x<4π​or43π​<x≤π
Apply the periodicity of cos(x)(1−tan(x))cos(x)(1+tan(x))​πn≤x<4π​+πnor43π​+πn<x≤π+πn

Popular Examples

sin((pix)/2)> 1/2sin(x)> 1/(sin(x))<=-1tan(x/2-pi/3)<= sqrt(3)2sin(x)cos(x)>= (sqrt(3))/2(sin(2θ))/2 <= 0.451
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024