Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin((pix)/2)> 1/2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(2πx​)>21​

Solution

31​+4n<x<35​+4n
+2
Interval Notation
(31​+4n,35​+4n)
Decimal
0.33333…+4n<x<1.66666…+4n
Solution steps
sin(2πx​)>21​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(21​)+2πn<2πx​<π−arcsin(21​)+2πn
If a<u<bthen a<uandu<barcsin(21​)+2πn<2πx​and2πx​<π−arcsin(21​)+2πn
arcsin(21​)+2πn<2πx​:x>31​+4n
arcsin(21​)+2πn<2πx​
Switch sides2πx​>arcsin(21​)+2πn
Simplify arcsin(21​)+2πn:6π​+2πn
arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​+2πn
2πx​>6π​+2πn
Multiply both sides by 2
2πx​>6π​+2πn
Multiply both sides by 222πx​>2⋅6π​+2⋅2πn
Simplify
22πx​>2⋅6π​+2⋅2πn
Simplify 22πx​:πx
22πx​
Divide the numbers: 22​=1=πx
Simplify 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=3π​+4πn
πx>3π​+4πn
πx>3π​+4πn
πx>3π​+4πn
Divide both sides by π
πx>3π​+4πn
Divide both sides by πππx​>π3π​​+π4πn​
Simplify
ππx​>π3π​​+π4πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π3π​​+π4πn​:31​+4n
π3π​​+π4πn​
π3π​​=31​
π3π​​
Apply the fraction rule: acb​​=c⋅ab​=3ππ​
Cancel the common factor: π=31​
π4πn​=4n
π4πn​
Cancel the common factor: π=4n
=31​+4n
x>31​+4n
x>31​+4n
x>31​+4n
2πx​<π−arcsin(21​)+2πn:x<35​+4n
2πx​<π−arcsin(21​)+2πn
Simplify π−arcsin(21​)+2πn:π−6π​+2πn
π−arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−6π​+2πn
2πx​<π−6π​+2πn
Multiply both sides by 2
2πx​<π−6π​+2πn
Multiply both sides by 222πx​<2π−2⋅6π​+2⋅2πn
Simplify
22πx​<2π−2⋅6π​+2⋅2πn
Simplify 22πx​:πx
22πx​
Divide the numbers: 22​=1=πx
Simplify 2π−2⋅6π​+2⋅2πn:2π−3π​+4πn
2π−2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multiply fractions: a⋅cb​=ca⋅b​=6π2​
Cancel the common factor: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multiply the numbers: 2⋅2=4=4πn
=2π−3π​+4πn
πx<2π−3π​+4πn
πx<2π−3π​+4πn
πx<2π−3π​+4πn
Divide both sides by π
πx<2π−3π​+4πn
Divide both sides by πππx​<π2π​−π3π​​+π4πn​
Simplify
ππx​<π2π​−π3π​​+π4πn​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify π2π​−π3π​​+π4πn​:2−31​+4n
π2π​−π3π​​+π4πn​
π2π​=2
π2π​
Cancel the common factor: π=2
π3π​​=31​
π3π​​
Apply the fraction rule: acb​​=c⋅ab​=3ππ​
Cancel the common factor: π=31​
π4πn​=4n
π4πn​
Cancel the common factor: π=4n
=2−31​+4n
x<2−31​+4n
x<2−31​+4n
Simplify 2−31​:35​
2−31​
Convert element to fraction: 2=32⋅3​=32⋅3​−31​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=32⋅3−1​
2⋅3−1=5
2⋅3−1
Multiply the numbers: 2⋅3=6=6−1
Subtract the numbers: 6−1=5=5
=35​
x<35​+4n
x<35​+4n
Combine the intervalsx>31​+4nandx<35​+4n
Merge Overlapping Intervals31​+4n<x<35​+4n

Popular Examples

sin(x)> 1/(sin(x))<=-1tan(x/2-pi/3)<= sqrt(3)2sin(x)cos(x)>= (sqrt(3))/2(sin(2θ))/2 <= 0.451cot((3pi+x)/2)<= 1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024