You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
2ty^'+(4+12t^3-120t^2)y=0
2ty^{\prime\:}+(4+12t^{3}-120t^{2})y=0
derivative of y=(5t-1)(6t-3)^{-1}
derivative\:y=(5t-1)(6t-3)^{-1}
tangent of f(x)=x+4e^x
tangent\:f(x)=x+4e^{x}
d/(dt)(acos(wt))
\frac{d}{dt}(a\cos(wt))
derivative of y=2x^2+8x+10
derivative\:y=2x^{2}+8x+10
derivative of (4x^2+5(5x-3))
\frac{d}{dx}((4x^{2}+5)(5x-3))
limit as x approaches 90 of cos(x)
\lim\:_{x\to\:90}(\cos(x))
integral from 0 to 9 of 3/(\sqrt[3]{x-1)}
\int\:_{0}^{9}\frac{3}{\sqrt[3]{x-1}}dx
derivative of f(4)=4x^{5/4}+8x^{3/2}+8x
derivative\:f(4)=4x^{\frac{5}{4}}+8x^{\frac{3}{2}}+8x
(d^2)/(dx^2)(sec(θ))
\frac{d^{2}}{dx^{2}}(\sec(θ))
derivative of-1/(x^3)
derivative\:-\frac{1}{x^{3}}
integral from-infinity to 0 of e^{-3x}
\int\:_{-\infty\:}^{0}e^{-3x}dx
taylor x^3+2x+1,2
taylor\:x^{3}+2x+1,2
y^{''}+64y=0,y(0)=1,y^'(0)=5
y^{\prime\:\prime\:}+64y=0,y(0)=1,y^{\prime\:}(0)=5
derivative of-x^3e^x
\frac{d}{dx}(-x^{3}e^{x})
(\partial)/(\partial x)(xe^{(x^2-y)})
\frac{\partial\:}{\partial\:x}(xe^{(x^{2}-y)})
integral of (x+2)sqrt((3x^2+12x))
\int\:(x+2)\sqrt{(3x^{2}+12x)}dx
(\partial)/(\partial y)(xy^2+ye^{x^2}+5)
\frac{\partial\:}{\partial\:y}(xy^{2}+ye^{x^{2}}+5)
derivative of y=ln(sqrt(x+5))
derivative\:y=\ln(\sqrt{x+5})
limit as x approaches 2 of x^2+6
\lim\:_{x\to\:2}(x^{2}+6)
derivative of ((4x^2+4x+6))/(sqrt(x))
derivative\:\frac{(4x^{2}+4x+6)}{\sqrt{x}}
integral of (x+5)/(2x+3)
\int\:\frac{x+5}{2x+3}dx
integral of te^{-8t}
\int\:te^{-8t}dt
derivative of 5excos(x)
derivative\:5ex\cos(x)
(dy)/(dx)=e^x,x(0)=6
\frac{dy}{dx}=e^{x},x(0)=6
(\partial)/(\partial x)(x^2+y^2+(12-x-y)^2)
\frac{\partial\:}{\partial\:x}(x^{2}+y^{2}+(12-x-y)^{2})
(\partial)/(\partial x)(xye^{-y})
\frac{\partial\:}{\partial\:x}(xye^{-y})
limit as x approaches ln(2) of-4e^{-2x}
\lim\:_{x\to\:\ln(2)}(-4e^{-2x})
integral of 9xe^x
\int\:9xe^{x}dx
y^{''}+4*y=cos(x)
y^{\prime\:\prime\:}+4\cdot\:y=\cos(x)
derivative of x/(x^2+225)
\frac{d}{dx}(\frac{x}{x^{2}+225})
integral from 1 to 4 of x^2-5x+4
\int\:_{1}^{4}x^{2}-5x+4dx
tangent of x^{3/2}+x^{1/2}
tangent\:x^{\frac{3}{2}}+x^{\frac{1}{2}}
limit as x approaches 1 of (sqrt(3-x))/(sqrt(3+x))e^{-x}cos(pix)
\lim\:_{x\to\:1}(\frac{\sqrt{3-x}}{\sqrt{3+x}}e^{-x}\cos(πx))
derivative of (8x^2+6x+8/(sqrt(x)))
\frac{d}{dx}(\frac{8x^{2}+6x+8}{\sqrt{x}})
integral from (sqrt(2))/4 to 1/2 of 1/(x^5sqrt(16x^2-1))
\int\:_{\frac{\sqrt{2}}{4}}^{\frac{1}{2}}\frac{1}{x^{5}\sqrt{16x^{2}-1}}dx
limit as x approaches 0-of x^2*sin(1/x)
\lim\:_{x\to\:0-}(x^{2}\cdot\:\sin(\frac{1}{x}))
integral from-2 to 3 of (33)/(sqrt(3-x))
\int\:_{-2}^{3}\frac{33}{\sqrt{3-x}}dx
integral of-3cos^2(x)sin^2(x)
\int\:-3\cos^{2}(x)\sin^{2}(x)dx
integral of (7x^2)/((36+x^2)^2)
\int\:\frac{7x^{2}}{(36+x^{2})^{2}}dx
(dy)/(dx)=(2x-1)/(sin(y))
\frac{dy}{dx}=\frac{2x-1}{\sin(y)}
(\partial)/(\partial z)(e^{xy}+z)
\frac{\partial\:}{\partial\:z}(e^{xy}+z)
derivative of (x+2^2+(10-3x)^2)
\frac{d}{dx}((x+2)^{2}+(10-3x)^{2})
sum from n=1 to infinity of 1+1/(n+1)
\sum\:_{n=1}^{\infty\:}1+\frac{1}{n+1}
limit as x approaches 0 of ((2-x)^3-8)/x
\lim\:_{x\to\:0}(\frac{(2-x)^{3}-8}{x})
inverse oflaplace 5/(s^2+49)
inverselaplace\:\frac{5}{s^{2}+49}
y(1+x^2)y^'-x(9+y^2)=0
y(1+x^{2})y^{\prime\:}-x(9+y^{2})=0
integral of cos(x)-cos^4(x)
\int\:\cos(x)-\cos^{4}(x)dx
integral of 9x^7e^{-x^4}
\int\:9x^{7}e^{-x^{4}}dx
y^{''}-y^'+4y=2sin(2x)
y^{\prime\:\prime\:}-y^{\prime\:}+4y=2\sin(2x)
integral from 0 to 7 of sqrt(49+x^2)
\int\:_{0}^{7}\sqrt{49+x^{2}}dx
derivative of (sqrt(x)-2(3sqrt(x)+8))
\frac{d}{dx}((\sqrt{x}-2)(3\sqrt{x}+8))
integral of (x+2)/(5x+6)
\int\:\frac{x+2}{5x+6}dx
derivative of e^xcos(x-sin(x)e^x)
\frac{d}{dx}(e^{x}\cos(x)-\sin(x)e^{x})
y^{''}+36y^'=0
y^{\prime\:\prime\:}+36y^{\prime\:}=0
limit as x approaches pi/2+of sec(x)
\lim\:_{x\to\:\frac{π}{2}+}(\sec(x))
integral of x(sqrt(9-x^2))
\int\:x(\sqrt{9-x^{2}})dx
tangent of f(x)=(5x)/(x+2),(3,3)
tangent\:f(x)=\frac{5x}{x+2},(3,3)
integral from 0 to 4 of x/8
\int\:_{0}^{4}\frac{x}{8}dx
tangent of f(x)=e^x-xe^x,\at x=0
tangent\:f(x)=e^{x}-xe^{x},\at\:x=0
limit as x approaches-11 of x^2+11
\lim\:_{x\to\:-11}(x^{2}+11)
limit as x approaches 0 of arctan(e^x)
\lim\:_{x\to\:0}(\arctan(e^{x}))
integral from 2 to 3 of 1/((x+1)ln(x+1))
\int\:_{2}^{3}\frac{1}{(x+1)\ln(x+1)}dx
integral of (csc^2(x))/(cot^4(x))
\int\:\frac{\csc^{2}(x)}{\cot^{4}(x)}dx
derivative of f(x)=10x^3-20x+1/5
derivative\:f(x)=10x^{3}-20x+\frac{1}{5}
y^{''}+y= 1/4 sin(3t)-3/4 sin(t)
y^{\prime\:\prime\:}+y=\frac{1}{4}\sin(3t)-\frac{3}{4}\sin(t)
derivative of arccos((ax/2))
\frac{d}{dx}(\arccos(\frac{ax}{2}))
integral of 1/x-4/(x^2+1)
\int\:\frac{1}{x}-\frac{4}{x^{2}+1}dx
integral from 0 to infinity of cos^2(x)
\int\:_{0}^{\infty\:}\cos^{2}(x)dx
integral of 1/(64e^{-8x)+e^{8x}}
\int\:\frac{1}{64e^{-8x}+e^{8x}}dx
slope of (5,7),(-4,-2)
slope\:(5,7),(-4,-2)
integral of (e^{4x}+e^{-4x})^2
\int\:(e^{4x}+e^{-4x})^{2}dx
derivative of f(x)=-(10)/(x^2)
derivative\:f(x)=-\frac{10}{x^{2}}
integral of 8-2x^2
\int\:8-2x^{2}dx
(\partial)/(\partial y)(4arctan(x/y))
\frac{\partial\:}{\partial\:y}(4\arctan(\frac{x}{y}))
derivative of (x^2-2x-48/(x+6))
\frac{d}{dx}(\frac{x^{2}-2x-48}{x+6})
derivative of f(x)=4x^2-2x+3
derivative\:f(x)=4x^{2}-2x+3
parity tan(3x)+x^4
parity\:\tan(3x)+x^{4}
y^{''}+11y^'+28y=84x^2+66x+6+40e^x
y^{\prime\:\prime\:}+11y^{\prime\:}+28y=84x^{2}+66x+6+40e^{x}
limit as x approaches 12 of sqrt(x-3)
\lim\:_{x\to\:12}(\sqrt{x-3})
tangent of f(x)=x^2-3,\at x=-2
tangent\:f(x)=x^{2}-3,\at\:x=-2
integral of x/(sqrt(2x^2+5))
\int\:\frac{x}{\sqrt{2x^{2}+5}}dx
integral of (3x+1)/(x^2+x-6)
\int\:\frac{3x+1}{x^{2}+x-6}dx
area x=7y^2,x=3+4y^2
area\:x=7y^{2},x=3+4y^{2}
integral of sin(mpix)
\int\:\sin(mπx)dx
derivative of f(x)=2x-(e^x)/2
derivative\:f(x)=2x-\frac{e^{x}}{2}
integral from pi to infinity of 4/(x^2)
\int\:_{π}^{\infty\:}\frac{4}{x^{2}}dx
y^{''}+2y^'+y=(3x+4)e^{3x}
y^{\prime\:\prime\:}+2y^{\prime\:}+y=(3x+4)e^{3x}
f(x)=x^5-x^3+3
f(x)=x^{5}-x^{3}+3
normal of y=x^4+9e^x,(0,9)
normal\:y=x^{4}+9e^{x},(0,9)
derivative of 9xe^{-kx}
derivative\:9xe^{-kx}
area y=4-x^2,y=14-7x
area\:y=4-x^{2},y=14-7x
integral of 8cos(x)+3x-8
\int\:8\cos(x)+3x-8dx
derivative of y=ln(1/((x-2)^3))
derivative\:y=\ln(\frac{1}{(x-2)^{3}})
laplacetransform-5e^{4t}
laplacetransform\:-5e^{4t}
(\partial)/(\partial x)(xsin(2x^2y))
\frac{\partial\:}{\partial\:x}(x\sin(2x^{2}y))
integral of 1/(tsqrt(4t^2-1))
\int\:\frac{1}{t\sqrt{4t^{2}-1}}dt
y^{''}-y=x^2e^x
y^{\prime\:\prime\:}-y=x^{2}e^{x}
integral of 2(x-1)
\int\:2(x-1)dx
y^{''}+2y^'+36y=0,y(0)=1,y^'(0)=0
y^{\prime\:\prime\:}+2y^{\prime\:}+36y=0,y(0)=1,y^{\prime\:}(0)=0
1
..
162
163
164
165
166
..
1823