You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
(\partial)/(\partial x)(1/((x+y)))
\frac{\partial\:}{\partial\:x}(\frac{1}{(x+y)})
integral of 4t^4e^{6t^5}
\int\:4t^{4}e^{6t^{5}}dt
limit as n approaches infinity of (1)^n
\lim\:_{n\to\:\infty\:}((1)^{n})
(dy)/(dx)(x+y)=x-y
\frac{dy}{dx}(x+y)=x-y
d/(dt)(-e^{2t})
\frac{d}{dt}(-e^{2t})
limit as x approaches 0 of (cos(2x)-cos(5x))/(x^2)
\lim\:_{x\to\:0}(\frac{\cos(2x)-\cos(5x)}{x^{2}})
integral of e^{5x}cos(3x)
\int\:e^{5x}\cos(3x)dx
integral of cos(2x)-sin(x/2)
\int\:\cos(2x)-\sin(\frac{x}{2})dx
laplacetransform t*sin(k*t)
laplacetransform\:t\cdot\:\sin(k\cdot\:t)
limit as x approaches-4 of sqrt(-5x-8)
\lim\:_{x\to\:-4}(\sqrt{-5x-8})
xy^'-2y=x^2-x-2
xy^{\prime\:}-2y=x^{2}-x-2
y^'=xe^{y-x^2}
y^{\prime\:}=xe^{y-x^{2}}
area x=2y^2,x=2
area\:x=2y^{2},x=2
y^{''}-2y^'-15y=e^{(3x)}cos(2x)
y^{\prime\:\prime\:}-2y^{\prime\:}-15y=e^{(3x)}\cos(2x)
integral of ((1-sqrt(z)))/(zsqrt(z))
\int\:\frac{(1-\sqrt{z})}{z\sqrt{z}}dz
derivative of cos(pix)
derivative\:\cos(πx)
limit as x approaches 8 of 88
\lim\:_{x\to\:8}(88)
derivative of f(x)=2^{x^3}
derivative\:f(x)=2^{x^{3}}
y=x^x+1
y=x^{x}+1
slope of (-2,-1),(4,2)
slope\:(-2,-1),(4,2)
derivative of 3+2x
\frac{d}{dx}(3+2x)
tangent of f(x)= x/(x-2),\at x=1
tangent\:f(x)=\frac{x}{x-2},\at\:x=1
limit as x approaches 1 of arcsec(x)
\lim\:_{x\to\:1}(\arcsec(x))
derivative of sqrt(x^3)+1/(sqrt(x))
\frac{d}{dx}(\sqrt{x^{3}}+\frac{1}{\sqrt{x}})
derivative of 7e^xcos(x)
derivative\:7e^{x}\cos(x)
integral of 1/(5x^5)
\int\:\frac{1}{5x^{5}}dx
integral from 0 to 8 of sqrt(64-x^2)
\int\:_{0}^{8}\sqrt{64-x^{2}}dx
(x^2+1)((dy)/(dx))+8x(y-1)=0,y(0)=5
(x^{2}+1)(\frac{dy}{dx})+8x(y-1)=0,y(0)=5
6x+(dy)/(dx)=0
6x+\frac{dy}{dx}=0
derivative of 1/({f(x)})
\frac{d}{dx}(\frac{1}{{f}(x)})
integral from 1 to-1 of (x-1)(3x+2)
\int\:_{1}^{-1}(x-1)(3x+2)dx
integral from 10 to 13 of 2x
\int\:_{10}^{13}2xdx
derivative of y=4x-3x^2
derivative\:y=4x-3x^{2}
limit as x approaches infinity of (4^x)/(3^{x-1)}
\lim\:_{x\to\:\infty\:}(\frac{4^{x}}{3^{x-1}})
(\partial)/(\partial x)(y/(y^2+x^2))
\frac{\partial\:}{\partial\:x}(\frac{y}{y^{2}+x^{2}})
integral from 2 to 8 of (10-x)
\int\:_{2}^{8}(10-x)dx
derivative of ,xe^y+y^2x-x^3,\at (1,0)
\frac{d}{dx}(,xe^{y}+y^{2}x-x^{3},\at\:(1,0))
integral of x^2arcsin(x)
\int\:x^{2}\arcsin(x)dx
derivative of-2/(5sqrt(x))
\frac{d}{dx}(-\frac{2}{5\sqrt{x}})
derivative of (x+2/(ln(x)))
\frac{d}{dx}(\frac{x+2}{\ln(x)})
(\partial}{\partial y}(e^{y/x}-\frac{e^{y/x}y)/x)
\frac{\partial\:}{\partial\:y}(e^{\frac{y}{x}}-\frac{e^{\frac{y}{x}}y}{x})
integral from 0 to 1 of xsqrt(1-x)
\int\:_{0}^{1}x\sqrt{1-x}dx
solvefor x,(d^2x)/(dt^2)+x=(t^2+t)sin(t)
solvefor\:x,\frac{d^{2}x}{dt^{2}}+x=(t^{2}+t)\sin(t)
slope of (-5,11),(-10,6)
slope\:(-5,11),(-10,6)
integral of (ln(2x))/(x^2)
\int\:\frac{\ln(2x)}{x^{2}}dx
y^{1/2}((dy)/(dx))+y^{3/2}=1,y(0)=9
y^{\frac{1}{2}}(\frac{dy}{dx})+y^{\frac{3}{2}}=1,y(0)=9
sum from n=1 to infinity}\sqrt{5 of*2/n
\sum\:_{n=1}^{\infty\:}\sqrt{5}\cdot\:\frac{2}{n}
limit as x approaches 6 of (x^2-9x+18)/(x-6)
\lim\:_{x\to\:6}(\frac{x^{2}-9x+18}{x-6})
area y=6x,y= 3/2 x,y=7-x^2
area\:y=6x,y=\frac{3}{2}x,y=7-x^{2}
integral of e^{2x^2}x
\int\:e^{2x^{2}}xdx
integral of (kx)/(sqrt(1-x))
\int\:\frac{kx}{\sqrt{1-x}}dx
integral from 0 to pi/2 of sec^4(t/2)
\int\:_{0}^{\frac{π}{2}}\sec^{4}(\frac{t}{2})dt
integral of ((5x^3-3\sqrt[5]{x})/(5x))
\int\:(\frac{5x^{3}-3\sqrt[5]{x}}{5x})dx
derivative of f(x)=((x+7)/(x+9))^6
derivative\:f(x)=(\frac{x+7}{x+9})^{6}
integral of y^2e^{3y}
\int\:y^{2}e^{3y}dy
derivative of-2cos(x-x)
\frac{d}{dx}(-2\cos(x)-x)
integral of 1/(t^2)cos(1/t-1)
\int\:\frac{1}{t^{2}}\cos(\frac{1}{t}-1)dt
derivative of ln(arctan(x+1))
derivative\:\ln(\arctan(x+1))
(dy)/(dx)=(cos(8x))/(e^{8y)}
\frac{dy}{dx}=\frac{\cos(8x)}{e^{8y}}
derivative of g(x)=(5-x)^2(2x-1)^5
derivative\:g(x)=(5-x)^{2}(2x-1)^{5}
integral from-8 to 10 of x/2+10
\int\:_{-8}^{10}\frac{x}{2}+10dx
tangent of g(x)=x^2-8,\at x=-3
tangent\:g(x)=x^{2}-8,\at\:x=-3
x^2y^{''}+xy^'+4y=0
x^{2}y^{\prime\:\prime\:}+xy^{\prime\:}+4y=0
tangent of f(x)=x^2-5x+5,(0,5)
tangent\:f(x)=x^{2}-5x+5,(0,5)
d/(dt)(e^t(cos(t)))
\frac{d}{dt}(e^{t}(\cos(t)))
integral from 0 to 3/4 of 1/(9+16x^2)
\int\:_{0}^{\frac{3}{4}}\frac{1}{9+16x^{2}}dx
derivative of 1/(sqrt(2pi)e^{-(x^2)/2})
\frac{d}{dx}(\frac{1}{\sqrt{2π}}e^{-\frac{x^{2}}{2}})
derivative of Ax^2e^x+Bxe^x+Ce^x
\frac{d}{dx}(Ax^{2}e^{x}+Bxe^{x}+Ce^{x})
integral of 1/(10x)
\int\:\frac{1}{10x}dx
derivative of y^2
derivative\:y^{2}
f^'(x)=3arctan(x^2-3x+2)
f^{\prime\:}(x)=3\arctan(x^{2}-3x+2)
integral of (sin(2x))/(cos^3(2x))
\int\:\frac{\sin(2x)}{\cos^{3}(2x)}dx
derivative of f(z)=(9z^4+3z^2+1)(3z^3-z)
derivative\:f(z)=(9z^{4}+3z^{2}+1)(3z^{3}-z)
integral of (4-2x)^2
\int\:(4-2x)^{2}dx
limit as x approaches-8 of 9x+10
\lim\:_{x\to\:-8}(9x+10)
((dx))/((dy))=(8-(2x))/((100+2y))
\frac{(dx)}{(dy)}=\frac{8-(2x)}{(100+2y)}
derivative of f(x)=e^{xsqrt(7x+6)}
derivative\:f(x)=e^{x\sqrt{7x+6}}
inverse oflaplace 7/(2s^{2+8)}
inverselaplace\:\frac{7}{2s^{2+8}}
integral of cos^{2-2}(x)
\int\:\cos^{2-2}(x)dx
derivative of (x^6/(12)+1/(8x^4))
\frac{d}{dx}(\frac{x^{6}}{12}+\frac{1}{8x^{4}})
slope of (3,-9),(52,1)
slope\:(3,-9),(52,1)
integral from 6 to 9 of y/(y^2-2y-3)
\int\:_{6}^{9}\frac{y}{y^{2}-2y-3}dy
(\partial)/(\partial x)(3xyln(xy))
\frac{\partial\:}{\partial\:x}(3xy\ln(xy))
tangent of x^4-y^2=7,(2,3)
tangent\:x^{4}-y^{2}=7,(2,3)
integral of cos^7(9-x)sin(9-x)
\int\:\cos^{7}(9-x)\sin(9-x)dx
v'-2=2v^2
v\prime\:-2=2v^{2}
derivative of (2x+7^3)
\frac{d}{dx}((2x+7)^{3})
(\partial)/(\partial x)(3x^2(5x+7y))
\frac{\partial\:}{\partial\:x}(3x^{2}(5x+7y))
tan(x)(dy)/(dx)=y
\tan(x)\frac{dy}{dx}=y
limit as x approaches 5 of (x^2-3x-10)/(x^2-10x+25)
\lim\:_{x\to\:5}(\frac{x^{2}-3x-10}{x^{2}-10x+25})
derivative of 6x^2
derivative\:6x^{2}
derivative of (sqrt(x)+1/(\sqrt[3]{x})^2)
\frac{d}{dx}((\sqrt{x}+\frac{1}{\sqrt[3]{x}})^{2})
y^'=(t^2)/y
y^{\prime\:}=\frac{t^{2}}{y}
integral of (x^3)/(sqrt(x^2+49))
\int\:\frac{x^{3}}{\sqrt{x^{2}+49}}dx
integral of (1/2 x)
\int\:(\frac{1}{2}x)dx
taylor e^{-h}+e^h
taylor\:e^{-h}+e^{h}
derivative of 20(1+e^{10-t})^{-1}
derivative\:20(1+e^{10-t})^{-1}
y^'=8xy
y^{\prime\:}=8xy
(\partial)/(\partial x)(x^4+y^2-4)
\frac{\partial\:}{\partial\:x}(x^{4}+y^{2}-4)
y^{''}-y^'-2y=e^{2t}
y^{\prime\:\prime\:}-y^{\prime\:}-2y=e^{2t}
1
..
229
230
231
232
233
..
1823