You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of ((x^2+5x+4))/(x^2-2x+1)
\int\:\frac{(x^{2}+5x+4)}{x^{2}-2x+1}dx
area y=x,y=5x-x^2
area\:y=x,y=5x-x^{2}
derivative of-2+2(-1^x)
\frac{d}{dx}(-2+2(-1)^{x})
derivative of (-2nx^{n-1})/((1+x^n)^2)
derivative\:\frac{-2nx^{n-1}}{(1+x^{n})^{2}}
derivative of (dy/(dx))=y
\frac{d}{dx}(\frac{dy}{dx})=y
integral of e^{-15x}
\int\:e^{-15x}dx
integral of (sqrt(n)+3)^3
\int\:(\sqrt{n}+3)^{3}dn
tangent of y^3=126-x^3,\at x=5
tangent\:y^{3}=126-x^{3},\at\:x=5
y^{''}-12y^'+100y=0
y^{\prime\:\prime\:}-12y^{\prime\:}+100y=0
y^'=5y+e^{-2x}y^{-2},y(0)=2
y^{\prime\:}=5y+e^{-2x}y^{-2},y(0)=2
derivative of f(x)=x^{10}e^x
derivative\:f(x)=x^{10}e^{x}
derivative of 3^{(x^5)}
derivative\:3^{(x^{5})}
sum from n=0 to infinity of sqrt(1+n)
\sum\:_{n=0}^{\infty\:}\sqrt{1+n}
y^'+2y=4,y(0)=4
y^{\prime\:}+2y=4,y(0)=4
derivative of 1/2 tan(x)
\frac{d}{dx}(\frac{1}{2}\tan(x))
integral from 6 to 8 of (50)/((x-6)^3)
\int\:_{6}^{8}\frac{50}{(x-6)^{3}}dx
integral of sqrt((6+x)/(6-x))
\int\:\sqrt{\frac{6+x}{6-x}}dx
integral of x^{4n}
\int\:x^{4n}dx
tangent of f(x)=(2x-1)/(x+1),\at x=1
tangent\:f(x)=\frac{2x-1}{x+1},\at\:x=1
derivative of (6x+x^2/((3+x)^2))
\frac{d}{dx}(\frac{6x+x^{2}}{(3+x)^{2}})
limit as n approaches infinity of 0.5^n
\lim\:_{n\to\:\infty\:}(0.5^{n})
derivative of 6sqrt(xe^x)
derivative\:6\sqrt{xe^{x}}
inverse oflaplace ((3s+2))/((s^2+4s+20))
inverselaplace\:\frac{(3s+2)}{(s^{2}+4s+20)}
limit as x approaches 0+of x/(1+ln(x))
\lim\:_{x\to\:0+}(\frac{x}{1+\ln(x)})
y^{''}+7y^'=0,y(0)=1,y^'(0)=1
y^{\prime\:\prime\:}+7y^{\prime\:}=0,y(0)=1,y^{\prime\:}(0)=1
(dy)/(dx)=2yx+yx^2,y(-3)=1
\frac{dy}{dx}=2yx+yx^{2},y(-3)=1
tangent of h(x)= 1/(2sqrt(x)),\at x=4
tangent\:h(x)=\frac{1}{2\sqrt{x}},\at\:x=4
limit as x approaches-2 of 2x^2
\lim\:_{x\to\:-2}(2x^{2})
integral of x^3sqrt(5+x^2)
\int\:x^{3}\sqrt{5+x^{2}}dx
derivative of sqrt(x+7)
derivative\:\sqrt{x+7}
integral from 0 to 4 of sqrt(1+36x)
\int\:_{0}^{4}\sqrt{1+36x}dx
integral from-1 to 2 of (2-x^2+x)
\int\:_{-1}^{2}(2-x^{2}+x)dx
limit as x approaches 0 of xcos((11)/x)
\lim\:_{x\to\:0}(x\cos(\frac{11}{x}))
derivative of f(x)=-8/(x^3)
derivative\:f(x)=-\frac{8}{x^{3}}
(dy)/(dx)=sqrt(x)y
\frac{dy}{dx}=\sqrt{x}y
derivative of f(x)= 4/3 pix^2
derivative\:f(x)=\frac{4}{3}πx^{2}
(\partial)/(\partial y)((x-y)^2y)
\frac{\partial\:}{\partial\:y}((x-y)^{2}y)
(\partial)/(\partial x)(3arctan(x/y))
\frac{\partial\:}{\partial\:x}(3\arctan(\frac{x}{y}))
y^{''}-8y^'+15y=-sin(2t)
y^{\prime\:\prime\:}-8y^{\prime\:}+15y=-\sin(2t)
y^{''}-2y^'+26y=e^xsin(x)
y^{\prime\:\prime\:}-2y^{\prime\:}+26y=e^{x}\sin(x)
(\partial)/(\partial x)(e^{2x+8y})
\frac{\partial\:}{\partial\:x}(e^{2x+8y})
tangent of 8sqrt(x)
tangent\:8\sqrt{x}
(\partial)/(\partial x)(2y^3)
\frac{\partial\:}{\partial\:x}(2y^{3})
derivative of (5x-3)^4(2x-7)^{-3}
derivative\:(5x-3)^{4}(2x-7)^{-3}
derivative of (3x^2/(sqrt(x)))
\frac{d}{dx}(\frac{3x^{2}}{\sqrt{x}})
derivative of-0.4x^3
\frac{d}{dx}(-0.4x^{3})
limit as x approaches 0 of 5/4 pi-pi
\lim\:_{x\to\:0}(\frac{5}{4}π-π)
limit as x approaches 0 of 1/(2-e^{1/x)}
\lim\:_{x\to\:0}(\frac{1}{2-e^{\frac{1}{x}}})
integral from 1/2 to 1 of (x^{-3}-3)
\int\:_{\frac{1}{2}}^{1}(x^{-3}-3)dx
limit as x approaches 2 of x^3+2x^2+1
\lim\:_{x\to\:2}(x^{3}+2x^{2}+1)
implicit (dy)/(dx),x^3-3xy^2+y^3=1
implicit\:\frac{dy}{dx},x^{3}-3xy^{2}+y^{3}=1
y^'=3x+y,y(0)=5
y^{\prime\:}=3x+y,y(0)=5
tangent of y=2sqrt(x),(1,2)
tangent\:y=2\sqrt{x},(1,2)
integral of 1/((x)ln(x))
\int\:\frac{1}{(x)\ln(x)}dx
derivative of ((x^2)/(x^2+4))
\frac{d}{dx}(\frac{(x^{2})}{x^{2}+4})
sum from n=0 to infinity of-6(1/4)^{2n}
\sum\:_{n=0}^{\infty\:}-6(\frac{1}{4})^{2n}
integral from 0 to 1 of (2x)/((x^2+3)^3)
\int\:_{0}^{1}\frac{2x}{(x^{2}+3)^{3}}dx
limit as x approaches infinity of ((e^{x^4-x^2}))/2
\lim\:_{x\to\:\infty\:}(\frac{(e^{x^{4}-x^{2}})}{2})
derivative of f(x)=xsqrt(1+x^2)
derivative\:f(x)=x\sqrt{1+x^{2}}
integral of (e^{-2x})/(1+e^{-x)}
\int\:\frac{e^{-2x}}{1+e^{-x}}dx
(\partial)/(\partial x)(3x^2-2xy+x-3y)
\frac{\partial\:}{\partial\:x}(3x^{2}-2xy+x-3y)
sum from n=0 to infinity of 1/(n^2+3)
\sum\:_{n=0}^{\infty\:}\frac{1}{n^{2}+3}
limit as x approaches 1 of-x^2
\lim\:_{x\to\:1}(-x^{2})
derivative of 2/(2-x)
\frac{d}{dx}(\frac{2}{2-x})
integral of ((x^2))/(x^2+1)
\int\:\frac{(x^{2})}{x^{2}+1}dx
derivative of 5-2(x-2^2)
\frac{d}{dx}(5-2(x-2)^{2})
d/(dy)(yx)
\frac{d}{dy}(yx)
(\partial)/(\partial t)(cos(t)-sin(t))
\frac{\partial\:}{\partial\:t}(\cos(t)-\sin(t))
(\partial)/(\partial x)((x+y)/(1+x^2))
\frac{\partial\:}{\partial\:x}(\frac{x+y}{1+x^{2}})
(d^4)/(dx^4)(1/(1-x))
\frac{d^{4}}{dx^{4}}(\frac{1}{1-x})
d/(dt)(t+3)
\frac{d}{dt}(t+3)
(\partial)/(\partial y)(sqrt(7-x^2-2y^2))
\frac{\partial\:}{\partial\:y}(\sqrt{7-x^{2}-2y^{2}})
tangent of f(x)=x^3,\at x=-3
tangent\:f(x)=x^{3},\at\:x=-3
limit as x approaches-2 of x-2
\lim\:_{x\to\:-2}(x-2)
derivative of 2+x
\frac{d}{dx}(2+x)
integral of e^{-1/2}
\int\:e^{-\frac{1}{2}}dx
implicit (dy)/(dx),y^5=x^6
implicit\:\frac{dy}{dx},y^{5}=x^{6}
2y^'+y=3t^2
2y^{\prime\:}+y=3t^{2}
y^{''}-y=2xe^x
y^{\prime\:\prime\:}-y=2xe^{x}
(\partial)/(\partial v)(sqrt(u/v))
\frac{\partial\:}{\partial\:v}(\sqrt{\frac{u}{v}})
derivative of 5+x
\frac{d}{dx}(5+x)
laplacetransform 1/2 (e^x+e^{-x})
laplacetransform\:\frac{1}{2}(e^{x}+e^{-x})
integral of sin(x+y)
\int\:\sin(x+y)dx
derivative of (x+1/(x+3))
\frac{d}{dx}(\frac{x+1}{x+3})
f(x)=(4x+4)/(3x^{2/3)}
f(x)=\frac{4x+4}{3x^{\frac{2}{3}}}
integral from-1 to 4 of 2-2x
\int\:_{-1}^{4}2-2xdx
derivative of cos^3(pix)
derivative\:\cos^{3}(πx)
x^2(dy)/(dx)=2xy+y^2
x^{2}\frac{dy}{dx}=2xy+y^{2}
limit as x approaches 2 of ((3))/(x+2)
\lim\:_{x\to\:2}(\frac{(3)}{x+2})
(\partial)/(\partial x)(-7xy)
\frac{\partial\:}{\partial\:x}(-7xy)
derivative of sin(6)
\frac{d}{dx}(\sin(6))
integral from 1 to t of 7x^{-3}
\int\:_{1}^{t}7x^{-3}dx
(x^2+2y^2)=xyy^',y(-1)=1
(x^{2}+2y^{2})=xyy^{\prime\:},y(-1)=1
integral from 3 to infinity of 4/(x^2-x)
\int\:_{3}^{\infty\:}\frac{4}{x^{2}-x}dx
integral of 8xln(2x)
\int\:8x\ln(2x)dx
limit as x approaches 1 of x^2+x-3
\lim\:_{x\to\:1}(x^{2}+x-3)
tangent of f(x)=x^3+2x,\at x=-3
tangent\:f(x)=x^{3}+2x,\at\:x=-3
sum from n=1 to infinity of (1/n)^n
\sum\:_{n=1}^{\infty\:}(\frac{1}{n})^{n}
integral from 0 to 2 of (x^2-5x)
\int\:_{0}^{2}(x^{2}-5x)dx
derivative of 4\sqrt[3]{x}
\frac{d}{dx}(4\sqrt[3]{x})
1
..
279
280
281
282
283
..
1823