You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 1 of 1-x-[x]
\lim\:_{x\to\:1}(1-x-[x])
derivative of (2x-3/(x^2-1))
\frac{d}{dx}(\frac{2x-3}{x^{2}-1})
integral of (6x+y)
\int\:(6x+y)dx
xy'+(1+xcot(x))y=0
xy\prime\:+(1+x\cot(x))y=0
tangent of f(x)=tan(3x),\at x= pi/9
tangent\:f(x)=\tan(3x),\at\:x=\frac{π}{9}
integral of sqrt(2+2cos(4x))
\int\:\sqrt{2+2\cos(4x)}dx
(\partial)/(\partial y)(x/((x^2+y^2)))
\frac{\partial\:}{\partial\:y}(\frac{x}{(x^{2}+y^{2})})
integral of (x^2)
\int\:(x^{2})dx
derivative of (2x^{2x})
\frac{d}{dx}((2x)^{2x})
derivative of 4x^3sec(7x)
\frac{d}{dx}(4x^{3}\sec(7x))
tangent of sqrt(x^2+16),\at x=3
tangent\:\sqrt{x^{2}+16},\at\:x=3
integral of 1/3 x^3sqrt(9-x^2)
\int\:\frac{1}{3}x^{3}\sqrt{9-x^{2}}dx
derivative of f(x)=(12)/((3x-4)^5)
\frac{d}{dx}f(x)=\frac{12}{(3x-4)^{5}}
integral of (-2)/(z^3)
\int\:\frac{-2}{z^{3}}dz
y^{''}+4y^'+5y=15x+e^{-x}
y^{\prime\:\prime\:}+4y^{\prime\:}+5y=15x+e^{-x}
derivative of (sin(x)/(1+sin(x)))
\frac{d}{dx}(\frac{\sin(x)}{1+\sin(x)})
integral from 1 to infinity of (1/(x^3))
\int\:_{1}^{\infty\:}(\frac{1}{x^{3}})dx
laplacetransform 4t^2cos(2t)+5te^{-7t}
laplacetransform\:4t^{2}\cos(2t)+5te^{-7t}
derivative of \sqrt[4]{x^9}+2sqrt(x^5)
\frac{d}{dx}(\sqrt[4]{x^{9}}+2\sqrt{x^{5}})
derivative of f(x)=(c^5-x^5)/(c^5+c^5)
derivative\:f(x)=\frac{c^{5}-x^{5}}{c^{5}+c^{5}}
f^'(t)-f(t)=6t
f^{\prime\:}(t)-f(t)=6t
y^2+x^2y^'=xyy^'
y^{2}+x^{2}y^{\prime\:}=xyy^{\prime\:}
area y=x,y=(x-1)^2
area\:y=x,y=(x-1)^{2}
integral of ((9+sqrt(x)+x))/x
\int\:\frac{(9+\sqrt{x}+x)}{x}dx
integral of sec^2(2x)sin(2x)
\int\:\sec^{2}(2x)\sin(2x)dx
limit as x approaches-infinity of g(x)
\lim\:_{x\to\:-\infty\:}(g(x))
integral of sqrt(6x-7)
\int\:\sqrt{6x-7}dx
16y^{''}+3y=0
16y^{\prime\:\prime\:}+3y=0
integral from 0 to N of e^{-st}sin(2t)
\int\:_{0}^{N}e^{-st}\sin(2t)dt
derivative of 1/(sqrt(1+4t^2))
derivative\:\frac{1}{\sqrt{1+4t^{2}}}
slope of 5/(sqrt(x))
slope\:\frac{5}{\sqrt{x}}
integral from 0 to 1 of 3^{-x}
\int\:_{0}^{1}3^{-x}dx
integral from b to 2b of x^6
\int\:_{b}^{2b}x^{6}dx
derivative of-4x+4
\frac{d}{dx}(-4x+4)
limit as x approaches 0 of 1-e^x
\lim\:_{x\to\:0}(1-e^{x})
derivative of asin(3x)
\frac{d}{dx}(a\sin(3x))
limit as x approaches-1-of x/(x^2-1)
\lim\:_{x\to\:-1-}(\frac{x}{x^{2}-1})
derivative of 1/(8x)
derivative\:\frac{1}{8x}
slope of y=sqrt(x),(25,5)
slope\:y=\sqrt{x},(25,5)
(\partial)/(\partial y)(sqrt(4-x^2-y^2))
\frac{\partial\:}{\partial\:y}(\sqrt{4-x^{2}-y^{2}})
integral of sqrt(1+\sqrt{z)}
\int\:\sqrt{1+\sqrt{z}}dz
integral of (x-2)^4
\int\:(x-2)^{4}dx
derivative of e(1/x)
\frac{d}{dx}(e(\frac{1}{x}))
16xy^'-2y=-(x^2)/(y^{15)}
16xy^{\prime\:}-2y=-\frac{x^{2}}{y^{15}}
maclaurin tan(2x)
maclaurin\:\tan(2x)
integral of cos^2(wt)
\int\:\cos^{2}(wt)dt
integral of (sin(8x))/8
\int\:\frac{\sin(8x)}{8}dx
(dy)/(dx)=ye^{-x^2},y(4)=1
\frac{dy}{dx}=ye^{-x^{2}},y(4)=1
y^2(dy)/(dx)=3x^2y^3-6x^2
y^{2}\frac{dy}{dx}=3x^{2}y^{3}-6x^{2}
integral of sin^5(6x)
\int\:\sin^{5}(6x)dx
laplacetransform sin(6t)
laplacetransform\:\sin(6t)
f(x)=cos(7x)
f(x)=\cos(7x)
expand (x^2)/(5(1-x))
expand\:\frac{x^{2}}{5(1-x)}
derivative of cos(xt)
\frac{d}{dx}(\cos(xt))
limit as x approaches 0.5 of f(x)
\lim\:_{x\to\:0.5}(f(x))
integral from 1 to 5 of 2/(x^3)
\int\:_{1}^{5}\frac{2}{x^{3}}dx
derivative of (2e^x-x^5/(1-3x^5))
\frac{d}{dx}(\frac{2e^{x}-x^{5}}{1-3x^{5}})
integral of (2x-3)/6
\int\:\frac{2x-3}{6}dx
derivative of (x^2/(x^4))
\frac{d}{dx}(\frac{x^{2}}{x^{4}})
derivative of 1/(sqrt(1-x))
\frac{d}{dx}(\frac{1}{\sqrt{1-x}})
integral of coth^2(x)
\int\:\coth^{2}(x)dx
integral of 1/(9-x^2)
\int\:\frac{1}{9-x^{2}}dx
integral of e^{-kNx}
\int\:e^{-kNx}dx
expand 2(x-6)^3
expand\:2(x-6)^{3}
limit as z approaches 0 of z^3cos(1/z)
\lim\:_{z\to\:0}(z^{3}\cos(\frac{1}{z}))
derivative of cos^3(e^{4x})
derivative\:\cos^{3}(e^{4x})
(\partial)/(\partial x)(xy+4/x+2/y)
\frac{\partial\:}{\partial\:x}(xy+\frac{4}{x}+\frac{2}{y})
taylor sqrt(x),16
taylor\:\sqrt{x},16
f(x)=e^{10x}
f(x)=e^{10x}
(\partial)/(\partial y)(x^2y^2e^{2xy})
\frac{\partial\:}{\partial\:y}(x^{2}y^{2}e^{2xy})
(x^{3/2})^'
(x^{\frac{3}{2}})^{\prime\:}
(\partial)/(\partial y)(ln(sqrt(x^2+y^2)))
\frac{\partial\:}{\partial\:y}(\ln(\sqrt{x^{2}+y^{2}}))
maclaurin ln(4+x^2)
maclaurin\:\ln(4+x^{2})
integral from 1 to 2 of 15sqrt(4x^2-3)
\int\:_{1}^{2}15\sqrt{4x^{2}-3}dx
limit as x approaches infinity of 1/8
\lim\:_{x\to\:\infty\:}(\frac{1}{8})
tangent of f(x)= 3/(4x+1),(-1,-1)
tangent\:f(x)=\frac{3}{4x+1},(-1,-1)
derivative of 2x+(200/x)
\frac{d}{dx}(2x+\frac{200}{x})
derivative of f(x)= 32/0
derivative\:f(x)=\frac{32}{0}
(\partial)/(\partial y)(e^{-y}cos(pix))
\frac{\partial\:}{\partial\:y}(e^{-y}\cos(πx))
integral of 4tan^2(x)sec^2(x)
\int\:4\tan^{2}(x)\sec^{2}(x)dx
integral of arcsin(1/x)
\int\:\arcsin(\frac{1}{x})dx
taylor f(x)=8.8sqrt(x)
taylor\:f(x)=8.8\sqrt{x}
derivative of e^{2x}x(acos(x+bsin(x)))
\frac{d}{dx}(e^{2x}x(a\cos(x)+b\sin(x)))
limit as x approaches 8+of 3/(x-8)
\lim\:_{x\to\:8+}(\frac{3}{x-8})
derivative of-(x^2/2)
\frac{d}{dx}(-\frac{x^{2}}{2})
derivative of 2\sqrt[5]{x^3}
derivative\:2\sqrt[5]{x^{3}}
tangent of f(x)=(-8x)/(x^2+1),\at x=0
tangent\:f(x)=\frac{-8x}{x^{2}+1},\at\:x=0
integral of 1/x-3/(x^2+1)
\int\:\frac{1}{x}-\frac{3}{x^{2}+1}dx
integral of (2sin(x))
\int\:(2\sin(x))dx
derivative of (3x^3/2)
\frac{d}{dx}(\frac{3x^{3}}{2})
(ye^{xy}cos(2x)-2e^{xy}sin(2x)+2x)+(xe^{xy}cos(2x)-3)y^'=0
(ye^{xy}\cos(2x)-2e^{xy}\sin(2x)+2x)+(xe^{xy}\cos(2x)-3)y^{\prime\:}=0
limit as x approaches 0 of (1-6x)^{5/x}
\lim\:_{x\to\:0}((1-6x)^{\frac{5}{x}})
(dy)/(dx)-sin(x)y=2sin(x)
\frac{dy}{dx}-\sin(x)y=2\sin(x)
derivative of g(t)=5(cos(pit))^2
derivative\:g(t)=5(\cos(πt))^{2}
(dy)/(dx)=2x-1+2xy-y
\frac{dy}{dx}=2x-1+2xy-y
slope of (-19.7,10.5),(-18.9,3.4)
slope\:(-19.7,10.5),(-18.9,3.4)
derivative of cos(2pix)
\frac{d}{dx}(\cos(2πx))
inverse oflaplace t^6e^{8t}
inverselaplace\:t^{6}e^{8t}
f(x)=3e^{2x}
f(x)=3e^{2x}
integral from 9 to 16 of 1/(9-sqrt(x))
\int\:_{9}^{16}\frac{1}{9-\sqrt{x}}dx
1
..
499
500
501
502
503
..
1823