You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
2xy+x^2((dy)/(dx))=y^2
2xy+x^{2}(\frac{dy}{dx})=y^{2}
limit as x approaches 4 of sqrt(4x)+2
\lim\:_{x\to\:4}(\sqrt{4x}+2)
derivative of y=x^2+2x-3
derivative\:y=x^{2}+2x-3
derivative of 6/(sqrt(x))
derivative\:\frac{6}{\sqrt{x}}
tangent of y=e^s(s^3+5),(0,5)
tangent\:y=e^{s}(s^{3}+5),(0,5)
integral of (e^{6x})/(e^{2x)}
\int\:\frac{e^{6x}}{e^{2x}}dx
(\partial)/(\partial x)(sqrt(2x+y^{10)})
\frac{\partial\:}{\partial\:x}(\sqrt{2x+y^{10}})
integral of (pi^2-1)
\int\:(π^{2}-1)dx
integral of 4xln(6x)
\int\:4x\ln(6x)dx
100y^{''}-20y^'+y=0
100y^{\prime\:\prime\:}-20y^{\prime\:}+y=0
(x^2y+3y)y^'=2xy^2+8x
(x^{2}y+3y)y^{\prime\:}=2xy^{2}+8x
(dy)/(dx)=e^{-3y}
\frac{dy}{dx}=e^{-3y}
(dx)/(dt)=t^3(1-x),x(0)=3
\frac{dx}{dt}=t^{3}(1-x),x(0)=3
derivative of 3x^{k-2}+2kx^{k-1}+4x^k
\frac{d}{dx}(3x^{k-2}+2kx^{k-1}+4x^{k})
integral of x/((x-2)^3)
\int\:\frac{x}{(x-2)^{3}}dx
derivative of 1/4 e^x+3/4 e^{-x}
\frac{d}{dx}(\frac{1}{4}e^{x}+\frac{3}{4}e^{-x})
derivative of (1+x^2/x)
\frac{d}{dx}(\frac{1+x^{2}}{x})
limit as x approaches 4 of 6/x
\lim\:_{x\to\:4}(\frac{6}{x})
integral of xy^2
\int\:xy^{2}dx
simplify (x^2+2x)/(4x)
simplify\:\frac{x^{2}+2x}{4x}
(dy)/(dx)=-y+1
\frac{dy}{dx}=-y+1
integral of (4x-3)/(sqrt(x))
\int\:\frac{4x-3}{\sqrt{x}}dx
derivative of y=ln(5+2x+x^3)
derivative\:y=\ln(5+2x+x^{3})
integral of 1/(cos^2(ay))
\int\:\frac{1}{\cos^{2}(ay)}dy
(\partial)/(\partial x)(8x^2+y^2-9y)
\frac{\partial\:}{\partial\:x}(8x^{2}+y^{2}-9y)
tangent of f(x)=x^2+3x+1,\at x=4
tangent\:f(x)=x^{2}+3x+1,\at\:x=4
limit as x approaches 0 of ln(0)
\lim\:_{x\to\:0}(\ln(0))
integral of x^3(3+x^4)^5
\int\:x^{3}(3+x^{4})^{5}dx
(\partial)/(\partial x)(2x^2y+3)
\frac{\partial\:}{\partial\:x}(2x^{2}y+3)
(dr)/(dθ)r=(4+sec(θ))sin(θ)
\frac{dr}{dθ}r=(4+\sec(θ))\sin(θ)
derivative of f(x)=sqrt((x^2*5^x)^9)
derivative\:f(x)=\sqrt{(x^{2}\cdot\:5^{x})^{9}}
integral of 12x(3x^2-1)^3
\int\:12x(3x^{2}-1)^{3}dx
derivative of ce^{-2x}
\frac{d}{dx}(ce^{-2x})
integral from 1 to 2 of x^2-1
\int\:_{1}^{2}x^{2}-1dx
y^'=((1-2x))/y
y^{\prime\:}=\frac{(1-2x)}{y}
expand (x+5)e^{2x}+7
expand\:(x+5)e^{2x}+7
(dy)/(dt)=5*(y-t^2)
\frac{dy}{dt}=5\cdot\:(y-t^{2})
(\partial)/(\partial x)(1/((1-x)^2))
\frac{\partial\:}{\partial\:x}(\frac{1}{(1-x)^{2}})
derivative of sin(t/2)
derivative\:\sin(\frac{t}{2})
derivative of xinx
\frac{d}{dx}(xinx)
integral of 1/(3+2x)
\int\:\frac{1}{3+2x}dx
integral of z^3
\int\:z^{3}dz
tangent of y= 1/(x^4),(3, 1/81)
tangent\:y=\frac{1}{x^{4}},(3,\frac{1}{81})
integral of 1/(sin^2(x))
\int\:\frac{1}{\sin^{2}(x)}dx
limit as x approaches 2+of (x+1)/(x-2)
\lim\:_{x\to\:2+}(\frac{x+1}{x-2})
integral from 0 to pi of 5sin^2(tco)s^4t
\int\:_{0}^{π}5\sin^{2}(tco)s^{4}tdt
tangent of f(x)=(ln(x))^4,\at x=2
tangent\:f(x)=(\ln(x))^{4},\at\:x=2
derivative of y=(x^3)/(5-x^2)
derivative\:y=\frac{x^{3}}{5-x^{2}}
(\partial)/(\partial x)(ln(x^2+y^4))
\frac{\partial\:}{\partial\:x}(\ln(x^{2}+y^{4}))
area y=2x^2+5x+6,(-2,0)
area\:y=2x^{2}+5x+6,(-2,0)
derivative of 1/2 x^2-1/4 x+1/3
\frac{d}{dx}(\frac{1}{2}x^{2}-\frac{1}{4}x+\frac{1}{3})
integral of 4(cos(x))/(sin^2(x))
\int\:4\frac{\cos(x)}{\sin^{2}(x)}dx
derivative of 2x^2-7x+5
derivative\:2x^{2}-7x+5
(\partial)/(\partial x)(Ce^{2x})
\frac{\partial\:}{\partial\:x}(Ce^{2x})
derivative of x/(sqrt(x)+1)
derivative\:\frac{x}{\sqrt{x}+1}
derivative of x^2+5-3x^{-2}
\frac{d}{dx}(x^{2}+5-3x^{-2})
integral of x^5cos(y^4)
\int\:x^{5}\cos(y^{4})dx
(\partial)/(\partial u)(vcos(u))
\frac{\partial\:}{\partial\:u}(v\cos(u))
(d^2)/(dx^2)(sin^2(x))
\frac{d^{2}}{dx^{2}}(\sin^{2}(x))
derivative of 4/(x^4-5\sqrt[3]{x})
\frac{d}{dx}(\frac{4}{x^{4}}-5\sqrt[3]{x})
integral of 5/(x^2+4)
\int\:\frac{5}{x^{2}+4}dx
integral of (2x^3-2x^2+1)/(x^2-x)
\int\:\frac{2x^{3}-2x^{2}+1}{x^{2}-x}dx
limit as x approaches infinity of (3^{x-3})/(2^{n+3)}
\lim\:_{x\to\:\infty\:}(\frac{3^{x-3}}{2^{n+3}})
limit as x approaches 2-of x+4
\lim\:_{x\to\:2-}(x+4)
3y(x^2-1)dx+(x^3+8y-3x)dy=0
3y(x^{2}-1)dx+(x^{3}+8y-3x)dy=0
slope of y=x^2-5
slope\:y=x^{2}-5
derivative of f(x)= 1/2 x-1/3
derivative\:f(x)=\frac{1}{2}x-\frac{1}{3}
derivative of (470t)/((t^2+6)^3)
derivative\:\frac{470t}{(t^{2}+6)^{3}}
y^{''}-6y^'+8y=-4e^{3t}
y^{\prime\:\prime\:}-6y^{\prime\:}+8y=-4e^{3t}
(\partial ^2)/(\partial y^2)(2cos(xy^2))
\frac{\partial\:^{2}}{\partial\:y^{2}}(2\cos(xy^{2}))
tangent of f(x)=4x^2-5x,\at x=-3
tangent\:f(x)=4x^{2}-5x,\at\:x=-3
(\partial)/(\partial x)(x^2ln(y-1))
\frac{\partial\:}{\partial\:x}(x^{2}\ln(y-1))
integral from 1 to 2 of x(x-1)^4
\int\:_{1}^{2}x(x-1)^{4}dx
integral of ln(t)*t^2
\int\:\ln(t)\cdot\:t^{2}dt
limit as x approaches+(-infinity)+of x^5
\lim\:_{x\to\:+(-\infty\:)+}(x^{5})
(dy)/(dx)=(5x)/(2y)
\frac{dy}{dx}=\frac{5x}{2y}
area y=x^{-3},1<= x<= 6
area\:y=x^{-3},1\le\:x\le\:6
integral from-2 to 2 of x^2-2
\int\:_{-2}^{2}x^{2}-2dx
integral of ln(3-x)
\int\:\ln(3-x)dx
integral from 1 to 2 of (sqrt(x-1))/(2x)
\int\:_{1}^{2}\frac{\sqrt{x-1}}{2x}dx
(\partial}{\partial y}(sin(\frac{5x)/y))
\frac{\partial\:}{\partial\:y}(\sin(\frac{5x}{y}))
area y= 4/x ,y=x,y=4
area\:y=\frac{4}{x},y=x,y=4
integral of 5x^2(x^3+1)^{10}
\int\:5x^{2}(x^{3}+1)^{10}dx
derivative of f(x)=(5x^3+4)(3x^7-5)
derivative\:f(x)=(5x^{3}+4)(3x^{7}-5)
integral of (x+4)/(x^2+7x-8)
\int\:\frac{x+4}{x^{2}+7x-8}dx
2y^{''}-3y^'+y=e^{-3x}
2y^{\prime\:\prime\:}-3y^{\prime\:}+y=e^{-3x}
integral of tan(bx)
\int\:\tan(bx)dx
integral of e^{-θ}cos(7θ)
\int\:e^{-θ}\cos(7θ)dθ
integral of-2/(x^6)
\int\:-\frac{2}{x^{6}}dx
integral of ((2x^3+x^2-3x)/x)
\int\:(\frac{2x^{3}+x^{2}-3x}{x})dx
derivative of \sqrt[4]{x^4-2}
\frac{d}{dx}(\sqrt[4]{x^{4}-2})
integral of (9/(sqrt(x))+9sqrt(x))
\int\:(\frac{9}{\sqrt{x}}+9\sqrt{x})dx
derivative of f(x)=9x+13xe^x
derivative\:f(x)=9x+13xe^{x}
(\partial)/(\partial z)(x^2e^{yz})
\frac{\partial\:}{\partial\:z}(x^{2}e^{yz})
limit as x approaches 0 of (x^3+5x)/x
\lim\:_{x\to\:0}(\frac{x^{3}+5x}{x})
integral from 0 to x of 1/(t^2-25)
\int\:_{0}^{x}\frac{1}{t^{2}-25}dt
y^'=y+3te^t,y(0)=4
y^{\prime\:}=y+3te^{t},y(0)=4
limit as x approaches 3 of sqrt(x-8)
\lim\:_{x\to\:3}(\sqrt{x-8})
integral of (s^3+3)^2(1-s^2)^3
\int\:(s^{3}+3)^{2}(1-s^{2})^{3}ds
y^{''}-16y=2e^{4x}
y^{\prime\:\prime\:}-16y=2e^{4x}
1
..
991
992
993
994
995
..
1823