Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2sin^2(x))/(sin(x)-1)<-1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)−12sin2(x)​<−1

Solution

6π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πn
+2
Interval Notation
(6π​+2πn,2π​+2πn)∪(2π​+2πn,65π​+2πn)
Decimal
0.52359…+2πn<x<1.57079…+2πnor1.57079…+2πn<x<2.61799…+2πn
Solution steps
sin(x)−12sin2(x)​<−1
Let: u=sin(x)u−12u2​<−1
u−12u2​<−1:u<−1or21​<u<1
u−12u2​<−1
Rewrite in standard form
u−12u2​<−1
Add 1 to both sidesu−12u2​+1<−1+1
Simplifyu−12u2​+1<0
Simplify u−12u2​+1:u−12u2+u−1​
u−12u2​+1
Convert element to fraction: 1=u−11(u−1)​=u−12u2​+u−11⋅(u−1)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=u−12u2+1⋅(u−1)​
1⋅(u−1)=u−1
1⋅(u−1)
Multiply: 1⋅(u−1)=(u−1)=(u−1)
Remove parentheses: (a)=a=u−1
=u−12u2+u−1​
u−12u2+u−1​<0
u−12u2+u−1​<0
Factor u−12u2+u−1​:u−1(2u−1)(u+1)​
u−12u2+u−1​
Factor 2u2+u−1:(2u−1)(u+1)
2u2+u−1
Break the expression into groups
2u2+u−1
Definition
Factors of 2:1,2
2
Divisors (Factors)
Find the Prime factors of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Add 1 1
The factors of 21,2
Negative factors of 2:−1,−2
Multiply the factors by −1 to get the negative factors−1,−2
For every two factors such that u∗v=−2,check if u+v=1
Check u=1,v=−2:u∗v=−2,u+v=−1⇒FalseCheck u=2,v=−1:u∗v=−2,u+v=1⇒True
u=2,v=−1
Group into (ax2+ux)+(vx+c)(2u2−u)+(2u−1)
=(2u2−u)+(2u−1)
Factor out ufrom 2u2−u:u(2u−1)
2u2−u
Apply exponent rule: ab+c=abacu2=uu=2uu−u
Factor out common term u=u(2u−1)
=u(2u−1)+(2u−1)
Factor out common term 2u−1=(2u−1)(u+1)
=u−1(2u−1)(u+1)​
u−1(2u−1)(u+1)​<0
Identify the intervals
Find the signs of the factors of u−1(2u−1)(u+1)​
Find the signs of 2u−1
2u−1=0:u=21​
2u−1=0
Move 1to the right side
2u−1=0
Add 1 to both sides2u−1+1=0+1
Simplify2u=1
2u=1
Divide both sides by 2
2u=1
Divide both sides by 222u​=21​
Simplifyu=21​
u=21​
2u−1<0:u<21​
2u−1<0
Move 1to the right side
2u−1<0
Add 1 to both sides2u−1+1<0+1
Simplify2u<1
2u<1
Divide both sides by 2
2u<1
Divide both sides by 222u​<21​
Simplifyu<21​
u<21​
2u−1>0:u>21​
2u−1>0
Move 1to the right side
2u−1>0
Add 1 to both sides2u−1+1>0+1
Simplify2u>1
2u>1
Divide both sides by 2
2u>1
Divide both sides by 222u​>21​
Simplifyu>21​
u>21​
Find the signs of u+1
u+1=0:u=−1
u+1=0
Move 1to the right side
u+1=0
Subtract 1 from both sidesu+1−1=0−1
Simplifyu=−1
u=−1
u+1<0:u<−1
u+1<0
Move 1to the right side
u+1<0
Subtract 1 from both sidesu+1−1<0−1
Simplifyu<−1
u<−1
u+1>0:u>−1
u+1>0
Move 1to the right side
u+1>0
Subtract 1 from both sidesu+1−1>0−1
Simplifyu>−1
u>−1
Find the signs of u−1
u−1=0:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
u−1<0:u<1
u−1<0
Move 1to the right side
u−1<0
Add 1 to both sidesu−1+1<0+1
Simplifyu<1
u<1
u−1>0:u>1
u−1>0
Move 1to the right side
u−1>0
Add 1 to both sidesu−1+1>0+1
Simplifyu>1
u>1
Find singularity points
Find the zeros of the denominator u−1:u=1
u−1=0
Move 1to the right side
u−1=0
Add 1 to both sidesu−1+1=0+1
Simplifyu=1
u=1
Summarize in a table:2u−1u+1u−1u−1(2u−1)(u+1)​​u<−1−−−−​u=−1−0−0​−1<u<21​−+−+​u=21​0+−0​21​<u<1++−−​u=1++0Undefined​u>1++++​​
Identify the intervals that satisfy the required condition: <0u<−1or21​<u<1
u<−1or21​<u<1
u<−1or21​<u<1
Substitute back u=sin(x)sin(x)<−1or21​<sin(x)<1
sin(x)<−1:False for all x∈R
sin(x)<−1
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)<−1and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy<−1and−1≤y≤1
Merge Overlapping Intervals
y<−1and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<−1and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
21​<sin(x)<1:6π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πn
21​<sin(x)<1
If a<u<bthen a<uandu<b21​<sin(x)andsin(x)<1
21​<sin(x):6π​+2πn<x<65π​+2πn
21​<sin(x)
Switch sidessin(x)>21​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(21​)+2πn<x<π−arcsin(21​)+2πn
Simplify arcsin(21​):6π​
arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​
Simplify π−arcsin(21​):65π​
π−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−6π​
Simplify
π−6π​
Convert element to fraction: π=6π6​=6π6​−6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π6−π​
Add similar elements: 6π−π=5π=65π​
=65π​
6π​+2πn<x<65π​+2πn
sin(x)<1:−23π​+2πn<x<2π​+2πn
sin(x)<1
For sin(x)<a, if −1<a≤1 then −π−arcsin(a)+2πn<x<arcsin(a)+2πn−π−arcsin(1)+2πn<x<arcsin(1)+2πn
Simplify −π−arcsin(1):−23π​
−π−arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=−π−2π​
Simplify
−π−2π​
Convert element to fraction: π=2π2​=−2π2​−2π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=2−π2−π​
Add similar elements: −2π−π=−3π=2−3π​
Apply the fraction rule: b−a​=−ba​=−23π​
=−23π​
Simplify arcsin(1):2π​
arcsin(1)
Use the following trivial identity:arcsin(1)=2π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=2π​
−23π​+2πn<x<2π​+2πn
Combine the intervals6π​+2πn<x<65π​+2πnand−23π​+2πn<x<2π​+2πn
Merge Overlapping Intervals6π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πn
Combine the intervalsFalseforallx∈Ror(6π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πn)
Merge Overlapping Intervals6π​+2πn<x<2π​+2πnor2π​+2πn<x<65π​+2πn

Popular Examples

pi/2-arctan(e^x)>0.0001tan(θ)-4/5 cos(θ)>0csc(θ)cot(x)>-1/(sqrt(3))(cos(x)-1.5708)(cos(x)+1.5708)<= 0cot(pi-x)<-1
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024