Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(sin(x))/(cos(x))>= 2sin(x)*cos(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)sin(x)​≥2sin(x)⋅cos(x)

Solution

4π​+πn≤x<2π​+πnor43π​+πn≤x≤π+πn
+2
Interval Notation
[4π​+πn,2π​+πn)∪[43π​+πn,π+πn]
Decimal
0.78539…+πn≤x<1.57079…+πnor2.35619…+πn≤x≤3.14159…+πn
Solution steps
cos(x)sin(x)​≥2sin(x)cos(x)
Move 2sin(x)cos(x)to the left side
cos(x)sin(x)​≥2sin(x)cos(x)
Subtract 2sin(x)cos(x) from both sidescos(x)sin(x)​−2sin(x)cos(x)≥2sin(x)cos(x)−2sin(x)cos(x)
cos(x)sin(x)​−2sin(x)cos(x)≥0
cos(x)sin(x)​−2sin(x)cos(x)≥0
Simplify cos(x)sin(x)​−2sin(x)cos(x):cos(x)sin(x)−2cos2(x)sin(x)​
cos(x)sin(x)​−2sin(x)cos(x)
Convert element to fraction: 2sin(x)cos(x)=cos(x)2sin(x)cos(x)cos(x)​=cos(x)sin(x)​−cos(x)2sin(x)cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−2sin(x)cos(x)cos(x)​
sin(x)−2sin(x)cos(x)cos(x)=sin(x)−2cos2(x)sin(x)
sin(x)−2sin(x)cos(x)cos(x)
2sin(x)cos(x)cos(x)=2cos2(x)sin(x)
2sin(x)cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Add the numbers: 1+1=2=2sin(x)cos2(x)
=sin(x)−2cos2(x)sin(x)
=cos(x)sin(x)−2cos2(x)sin(x)​
cos(x)sin(x)−2cos2(x)sin(x)​≥0
Periodicity of cos(x)sin(x)​−2sin(x)cos(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodscos(x)sin(x)​,2sin(x)cos(x)
Periodicity of cos(x)sin(x)​:π
cos(x)sin(x)​is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:π
Periodicity of 2sin(x)cos(x):π
2sin(x)cos(x)is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:π
Combine periods: π,π
=π
Find the zeroes and undifined points of cos(x)sin(x)−2cos2(x)sin(x)​for 0≤x<π
To find the zeroes, set the inequality to zerocos(x)sin(x)−2cos2(x)sin(x)​=0
cos(x)sin(x)−2cos2(x)sin(x)​=0,0≤x<π:x=0,x=43π​,x=4π​
cos(x)sin(x)−2cos2(x)sin(x)​=0,0≤x<π
g(x)f(x)​=0⇒f(x)=0sin(x)−2cos2(x)sin(x)=0
Factor sin(x)−2cos2(x)sin(x):−sin(x)(2​cos(x)+1)(2​cos(x)−1)
sin(x)−2cos2(x)sin(x)
Factor out common term −sin(x)=−sin(x)(−1+2cos2(x))
Factor 2cos2(x)−1:(2​cos(x)+1)(2​cos(x)−1)
2cos2(x)−1
Rewrite 2cos2(x)−1 as (2​cos(x))2−12
2cos2(x)−1
Apply radical rule: a=(a​)22=(2​)2=(2​)2cos2(x)−1
Rewrite 1 as 12=(2​)2cos2(x)−12
Apply exponent rule: ambm=(ab)m(2​)2cos2(x)=(2​cos(x))2=(2​cos(x))2−12
=(2​cos(x))2−12
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)(2​cos(x))2−12=(2​cos(x)+1)(2​cos(x)−1)=(2​cos(x)+1)(2​cos(x)−1)
=−sin(x)(2​cos(x)+1)(2​cos(x)−1)
−sin(x)(2​cos(x)+1)(2​cos(x)−1)=0
Solving each part separatelysin(x)=0or2​cos(x)+1=0or2​cos(x)−1=0
sin(x)=0,0≤x<π:x=0
sin(x)=0,0≤x<π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<πx=0
2​cos(x)+1=0,0≤x<π:x=43π​
2​cos(x)+1=0,0≤x<π
Move 1to the right side
2​cos(x)+1=0
Subtract 1 from both sides2​cos(x)+1−1=0−1
Simplify2​cos(x)=−1
2​cos(x)=−1
Divide both sides by 2​
2​cos(x)=−1
Divide both sides by 2​2​2​cos(x)​=2​−1​
Simplify
2​2​cos(x)​=2​−1​
Simplify 2​2​cos(x)​:cos(x)
2​2​cos(x)​
Cancel the common factor: 2​=cos(x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
cos(x)=−22​​
cos(x)=−22​​
cos(x)=−22​​
General solutions for cos(x)=−22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=43π​+2πn,x=45π​+2πn
x=43π​+2πn,x=45π​+2πn
Solutions for the range 0≤x<πx=43π​
2​cos(x)−1=0,0≤x<π:x=4π​
2​cos(x)−1=0,0≤x<π
Move 1to the right side
2​cos(x)−1=0
Add 1 to both sides2​cos(x)−1+1=0+1
Simplify2​cos(x)=1
2​cos(x)=1
Divide both sides by 2​
2​cos(x)=1
Divide both sides by 2​2​2​cos(x)​=2​1​
Simplify
2​2​cos(x)​=2​1​
Simplify 2​2​cos(x)​:cos(x)
2​2​cos(x)​
Cancel the common factor: 2​=cos(x)
Simplify 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
cos(x)=22​​
cos(x)=22​​
cos(x)=22​​
General solutions for cos(x)=22​​
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=4π​+2πn,x=47π​+2πn
x=4π​+2πn,x=47π​+2πn
Solutions for the range 0≤x<πx=4π​
Combine all the solutionsx=0,x=43π​,x=4π​
Find the undefined points:x=2π​
Find the zeros of the denominatorcos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<πx=2π​
0,4π​,2π​,43π​
Identify the intervals0<x<4π​,4π​<x<2π​,2π​<x<43π​,43π​<x<π
Summarize in a table:sin(x)−2cos2(x)sin(x)cos(x)cos(x)sin(x)−2cos2(x)sin(x)​​x=00+0​0<x<4π​−+−​x=4π​0+0​4π​<x<2π​+++​x=2π​+0Undefined​2π​<x<43π​+−−​x=43π​0−0​43π​<x<π−−+​x=π0−0​​
Identify the intervals that satisfy the required condition: ≥0x=0orx=4π​or4π​<x<2π​orx=43π​or43π​<x<πorx=π
Merge Overlapping Intervals
x=0or4π​≤x<2π​or43π​≤x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0orx=4π​
x=0orx=4π​
The union of two intervals is the set of numbers which are in either interval
x=0orx=4π​or4π​<x<2π​
x=0or4π​≤x<2π​
The union of two intervals is the set of numbers which are in either interval
x=0or4π​≤x<2π​orx=43π​
x=0or4π​≤x<2π​orx=43π​
The union of two intervals is the set of numbers which are in either interval
x=0or4π​≤x<2π​orx=43π​or43π​<x<π
x=0or4π​≤x<2π​or43π​≤x<π
The union of two intervals is the set of numbers which are in either interval
x=0or4π​≤x<2π​or43π​≤x<πorx=π
x=0or4π​≤x<2π​or43π​≤x≤π
x=0or4π​≤x<2π​or43π​≤x≤π
Apply the periodicity of cos(x)sin(x)​−2sin(x)cos(x)4π​+πn≤x<2π​+πnor43π​+πn≤x≤π+πn

Popular Examples

tan(x)*tan(2x)>12cos^3(3x)-cos(3x)<00<= sin(pix)2cos^2(x)+sin(x)>20.5<= sin(30t)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024