Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1-1/(cos(x))< 1/2*10^{-2}

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−cos(x)1​<21​⋅10−2

Solution

−2π​+2πn<x<2π​+2πn
+2
Interval Notation
(−2π​+2πn,2π​+2πn)
Decimal
−1.57079…+2πn<x<1.57079…+2πn
Solution steps
1−cos(x)1​<21​⋅10−2
Rewrite in standard form
1−cos(x)1​<21​⋅10−2
Subtract 21​10−2 from both sides1−cos(x)1​−21​⋅10−2<21​⋅10−2−21​⋅10−2
Simplify1−cos(x)1​−21​⋅10−2<21​⋅10−2−21​⋅10−2
Simplify 1−cos(x)1​−21​⋅10−2:1−cos(x)1​−2001​
1−cos(x)1​−21​⋅10−2
21​⋅10−2=2001​
21​⋅10−2
Apply exponent rule: a−b=ab1​10−2=1021​=21​⋅1021​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=2⋅1021⋅1​
Multiply the numbers: 1⋅1=1=102⋅21​
2⋅102=200
2⋅102
102=100=2⋅100
Multiply the numbers: 2⋅100=200=200
=2001​
=1−cos(x)1​−2001​
1−cos(x)1​−2001​<0
Simplify 1−cos(x)1​−2001​:200cos(x)199cos(x)−200​
1−cos(x)1​−2001​
Convert element to fraction: 1=11​=11​−cos(x)1​−2001​
Least Common Multiplier of 1,cos(x),200:200cos(x)
1,cos(x),200
Lowest Common Multiplier (LCM)
Least Common Multiplier of 1,200:200
1,200
Least Common Multiplier (LCM)
Prime factorization of 1
Prime factorization of 200:2⋅2⋅2⋅5⋅5
200
200divides by 2200=100⋅2=2⋅100
100divides by 2100=50⋅2=2⋅2⋅50
50divides by 250=25⋅2=2⋅2⋅2⋅25
25divides by 525=5⋅5=2⋅2⋅2⋅5⋅5
2,5 are all prime numbers, therefore no further factorization is possible=2⋅2⋅2⋅5⋅5
Multiply each factor the greatest number of times it occurs in either 1 or 200=2⋅2⋅2⋅5⋅5
Multiply the numbers: 2⋅2⋅2⋅5⋅5=200=200
Compute an expression comprised of factors that appear in at least one of the factored expressions=200cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 200cos(x)
For 11​:multiply the denominator and numerator by 200cos(x)11​=1⋅200cos(x)1⋅200cos(x)​=200cos(x)200cos(x)​
For cos(x)1​:multiply the denominator and numerator by 200cos(x)1​=cos(x)⋅2001⋅200​=200cos(x)200​
For 2001​:multiply the denominator and numerator by cos(x)2001​=200cos(x)1⋅cos(x)​=200cos(x)cos(x)​
=200cos(x)200cos(x)​−200cos(x)200​−200cos(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=200cos(x)200cos(x)−200−cos(x)​
200cos(x)−200−cos(x)=199cos(x)−200
200cos(x)−200−cos(x)
Group like terms=200cos(x)−cos(x)−200
Add similar elements: 200cos(x)−cos(x)=199cos(x)=199cos(x)−200
=200cos(x)199cos(x)−200​
200cos(x)199cos(x)−200​<0
Multiply both sides by 200200cos(x)200(199cos(x)−200)​<0⋅200
Simplifycos(x)199cos(x)−200​<0
cos(x)199cos(x)−200​<0
Identify the intervals
Find the signs of the factors of cos(x)199cos(x)−200​
Find the signs of 199cos(x)−200
199cos(x)−200=0:cos(x)=199200​
199cos(x)−200=0
Move 200to the right side
199cos(x)−200=0
Add 200 to both sides199cos(x)−200+200=0+200
Simplify199cos(x)=200
199cos(x)=200
Divide both sides by 199
199cos(x)=200
Divide both sides by 199199199cos(x)​=199200​
Simplifycos(x)=199200​
cos(x)=199200​
199cos(x)−200<0:cos(x)<199200​
199cos(x)−200<0
Move 200to the right side
199cos(x)−200<0
Add 200 to both sides199cos(x)−200+200<0+200
Simplify199cos(x)<200
199cos(x)<200
Divide both sides by 199
199cos(x)<200
Divide both sides by 199199199cos(x)​<199200​
Simplifycos(x)<199200​
cos(x)<199200​
199cos(x)−200>0:cos(x)>199200​
199cos(x)−200>0
Move 200to the right side
199cos(x)−200>0
Add 200 to both sides199cos(x)−200+200>0+200
Simplify199cos(x)>200
199cos(x)>200
Divide both sides by 199
199cos(x)>200
Divide both sides by 199199199cos(x)​>199200​
Simplifycos(x)>199200​
cos(x)>199200​
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:199cos(x)−200cos(x)cos(x)199cos(x)−200​​cos(x)<0−−+​cos(x)=0−0Undefined​0<cos(x)<199200​−+−​cos(x)=199200​0+0​cos(x)>199200​+++​​
Identify the intervals that satisfy the required condition: <00<cos(x)<199200​
0<cos(x)<199200​
If a<u<bthen a<uandu<b0<cos(x)andcos(x)<199200​
0<cos(x):−2π​+2πn<x<2π​+2πn
0<cos(x)
Switch sidescos(x)>0
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(0)+2πn<x<arccos(0)+2πn
Simplify −arccos(0):−2π​
−arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​
Simplify arccos(0):2π​
arccos(0)
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​
−2π​+2πn<x<2π​+2πn
cos(x)<199200​:True for all x∈R
cos(x)<199200​
Range of cos(x):−1≤cos(x)≤1
Function range definition
The range of the basic cosfunction is −1≤cos(x)≤1−1≤cos(x)≤1
cos(x)<199200​and−1≤cos(x)≤1:−1≤cos(x)≤1
Let y=cos(x)
Combine the intervalsy<199200​and−1≤y≤1
Merge Overlapping Intervals
y<199200​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<199200​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervals−2π​+2πn<x<2π​+2πnandTrueforallx∈R
Merge Overlapping Intervals−2π​+2πn<x<2π​+2πn

Popular Examples

sin(x)-sqrt(3)cos(x)<1(cos(x)(1+tan(x)))/(cos(x)(1-tan(x)))>0sin((pix)/2)> 1/2sin(x)> 1/(sin(x))<=-1tan(x/2-pi/3)<= sqrt(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024