You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
integral of (a^2-x^{2/3})
\int\:(a^{2}-x^{\frac{2}{3}})dx
limit as x approaches 0+of ln(1+sin(x))
\lim\:_{x\to\:0+}(\ln(1+\sin(x)))
derivative of-3sin(2x-6cos(x))
\frac{d}{dx}(-3\sin(2x)-6\cos(x))
derivative of (8x/(x^2+4))
\frac{d}{dx}(\frac{8x}{x^{2}+4})
integral of (3t^2-4t-4)
\int\:(3t^{2}-4t-4)dt
integral from 0 to 3 of te^{-t}
\int\:_{0}^{3}te^{-t}dt
area y^2=4x,4x-3y=4
area\:y^{2}=4x,4x-3y=4
integral from 1 to 5 of x/(sqrt(2x-1))
\int\:_{1}^{5}\frac{x}{\sqrt{2x-1}}dx
limit as x approaches 0 of cos(x)+sin(x)
\lim\:_{x\to\:0}(\cos(x)+\sin(x))
(dy)/(dx)=((y^2-1))/(x^2-1),y(7)=7
\frac{dy}{dx}=\frac{(y^{2}-1)}{x^{2}-1},y(7)=7
y^'=8x^3+2 y/x
y^{\prime\:}=8x^{3}+2\frac{y}{x}
(dy)/(dt)=-2y,y(0)=2
\frac{dy}{dt}=-2y,y(0)=2
sum from n=1 to infinity of n(5/4)^n
\sum\:_{n=1}^{\infty\:}n(\frac{5}{4})^{n}
(\partial)/(\partial x)(x^3y^5)
\frac{\partial\:}{\partial\:x}(x^{3}y^{5})
sum from n=2 to infinity of 1/(n-1)-1/n
\sum\:_{n=2}^{\infty\:}\frac{1}{n-1}-\frac{1}{n}
integral of (x^2+3x-1)/(x^3+8)
\int\:\frac{x^{2}+3x-1}{x^{3}+8}dx
derivative of cos^{ln(7x}(x))
\frac{d}{dx}(\cos^{\ln(7x)}(x))
integral of 1/x (x+1)^2
\int\:\frac{1}{x}(x+1)^{2}dx
derivative of xcos(x-picos(x)+2sin(x))
\frac{d}{dx}(x\cos(x)-π\cos(x)+2\sin(x))
6y^{''}+y^'-y=0
6y^{\prime\:\prime\:}+y^{\prime\:}-y=0
integral from 0 to pi/3 of cos^3(x)
\int\:_{0}^{\frac{π}{3}}\cos^{3}(x)dx
(xy^2+x^3)dx+(y^3+x^2y)dy=0
(xy^{2}+x^{3})dx+(y^{3}+x^{2}y)dy=0
integral of 1/(x^2+2x)
\int\:\frac{1}{x^{2}+2x}dx
integral of (4-3sin(2x))^4cos(2x)
\int\:(4-3\sin(2x))^{4}\cos(2x)dx
2yy^'+2=y^2+2x
2yy^{\prime\:}+2=y^{2}+2x
derivative of (x^2/4)
\frac{d}{dx}(\frac{x^{2}}{4})
sum from n=1 to infinity of (-6)^nx^n
\sum\:_{n=1}^{\infty\:}(-6)^{n}x^{n}
integral of (x^2)/(1-2x^3)
\int\:\frac{x^{2}}{1-2x^{3}}dx
integral of x^4e^{-x}
\int\:x^{4}e^{-x}dx
tangent of f(x)=sqrt(1-x),\at x=0
tangent\:f(x)=\sqrt{1-x},\at\:x=0
limit as x approaches 0 of 5
\lim\:_{x\to\:0}(5)
(dy)/(dx)=e^y(x^2-x)
\frac{dy}{dx}=e^{y}(x^{2}-x)
integral of (sqrt(x^2-169))/x
\int\:\frac{\sqrt{x^{2}-169}}{x}dx
derivative of (-2/(x^2))
\frac{d}{dx}(\frac{-2}{x^{2}})
implicit (dy)/(dx),y=13^x
implicit\:\frac{dy}{dx},y=13^{x}
derivative of x^4-2x^2+1
\frac{d}{dx}(x^{4}-2x^{2}+1)
derivative of f(x)=8x(x^2+3)^3
derivative\:f(x)=8x(x^{2}+3)^{3}
derivative of sin^8(x)
derivative\:\sin^{8}(x)
integral of (e^{2x})/4
\int\:\frac{e^{2x}}{4}dx
(\partial)/(\partial x)(xy^2e^{3x^2y-y^2})
\frac{\partial\:}{\partial\:x}(xy^{2}e^{3x^{2}y-y^{2}})
derivative of ((sqrt(x)+x))/(x^2)
derivative\:\frac{(\sqrt{x}+x)}{x^{2}}
inverse oflaplace 8/(s-1)-3/s
inverselaplace\:\frac{8}{s-1}-\frac{3}{s}
limit as x approaches 0 of x/(x^2+4x)
\lim\:_{x\to\:0}(\frac{x}{x^{2}+4x})
sum from n=1 to infinity of (-3)^nx^n
\sum\:_{n=1}^{\infty\:}(-3)^{n}x^{n}
limit as x approaches 4-of (|2x|)/x
\lim\:_{x\to\:4-}(\frac{\left|2x\right|}{x})
derivative of-32t
derivative\:-32t
derivative of sqrt(2)cos(x)
\frac{d}{dx}(\sqrt{2}\cos(x))
integral of sqrt(1+cos(2x))
\int\:\sqrt{1+\cos(2x)}dx
(d^2y)/(dx^2)+5(dy)/(dx)+4y=0
\frac{d^{2}y}{dx^{2}}+5\frac{dy}{dx}+4y=0
(dy)/(dx)=y^2(x+1)
\frac{dy}{dx}=y^{2}(x+1)
integral of 1/(9e^y+e^{-y)}
\int\:\frac{1}{9e^{y}+e^{-y}}dy
y^{1/2}(dy)/(dx)+y^{3/2}=1
y^{\frac{1}{2}}\frac{dy}{dx}+y^{\frac{3}{2}}=1
(\partial)/(\partial x)((x^2)/(1+t^2))
\frac{\partial\:}{\partial\:x}(\frac{x^{2}}{1+t^{2}})
limit as x approaches infinity of x*(arctan(e^x)-pi/2)
\lim\:_{x\to\:\infty\:}(x\cdot\:(\arctan(e^{x})-\frac{π}{2}))
(d^2)/(dx^2)(e^{-2x})
\frac{d^{2}}{dx^{2}}(e^{-2x})
integral of 1/((x^4-1)^2)
\int\:\frac{1}{(x^{4}-1)^{2}}dx
parity y=sqrt(x+\sqrt{x+\sqrt{x)}}
parity\:y=\sqrt{x+\sqrt{x+\sqrt{x}}}
integral of 1/(v^2+2v)
\int\:\frac{1}{v^{2}+2v}dv
derivative of-(3x+2cos(2x))
\frac{d}{dx}(-(3x+2)\cos(2x))
y^'=x^2sec(y)
y^{\prime\:}=x^{2}\sec(y)
(dy)/(dt)=-4y+3e^{-t}
\frac{dy}{dt}=-4y+3e^{-t}
y+2y^7=(y^3+6x)y^'
y+2y^{7}=(y^{3}+6x)y^{\prime\:}
integral of 1/(x^2*sqrt(x^2+1))
\int\:\frac{1}{x^{2}\cdot\:\sqrt{x^{2}+1}}dx
integral of 4xln(4x)
\int\:4x\ln(4x)dx
(dy)/(dx)=y(xy^4-1)
\frac{dy}{dx}=y(xy^{4}-1)
integral of-2x^6sin(3x)
\int\:-2x^{6}\sin(3x)dx
inverse oflaplace ((s+5))/(s^2+5s+4)
inverselaplace\:\frac{(s+5)}{s^{2}+5s+4}
y^'+7(tan(7x))y=5cos(7x)
y^{\prime\:}+7(\tan(7x))y=5\cos(7x)
integral of 5/(x^2sqrt(x^2-9))
\int\:\frac{5}{x^{2}\sqrt{x^{2}-9}}dx
(d^2)/(dx^2)(3xsin(x^2))
\frac{d^{2}}{dx^{2}}(3x\sin(x^{2}))
integral of x/(x-9)
\int\:\frac{x}{x-9}dx
derivative of sin^5(x^3)
derivative\:\sin^{5}(x^{3})
limit as x approaches 5 of |x-5|
\lim\:_{x\to\:5}(\left|x-5\right|)
integral of-2/(sqrt(100-9t^2))
\int\:-\frac{2}{\sqrt{100-9t^{2}}}dt
(\partial)/(\partial x)(sqrt(x^2+y^2-5))
\frac{\partial\:}{\partial\:x}(\sqrt{x^{2}+y^{2}-5})
tangent of f(x)=x^3-x,\at x=1
tangent\:f(x)=x^{3}-x,\at\:x=1
integral of 1/(sqrt(5+4x-x^2))
\int\:\frac{1}{\sqrt{5+4x-x^{2}}}dx
limit as x approaches-infinity of ((sqrt(4x^2+1)))/((2-7x))
\lim\:_{x\to\:-\infty\:}(\frac{(\sqrt{4x^{2}+1})}{(2-7x)})
xy^'+4y=-25xsin(x^5)
xy^{\prime\:}+4y=-25x\sin(x^{5})
derivative of 3/(sqrt(7x^4-5x^2+1))
\frac{d}{dx}(\frac{3}{\sqrt{7x^{4}-5x^{2}+1}})
limit as x approaches 0.1 of (e^x-1)/x
\lim\:_{x\to\:0.1}(\frac{e^{x}-1}{x})
derivative of f(x)=(6x-x^2)^{10}
derivative\:f(x)=(6x-x^{2})^{10}
derivative of sin^5(3x)
\frac{d}{dx}(\sin^{5}(3x))
y^'=4-9x^2-6x^5
y^{\prime\:}=4-9x^{2}-6x^{5}
derivative of cos(x+sin(x)+1/2 x^2+1/x)
\frac{d}{dx}(\cos(x)+\sin(x)+\frac{1}{2}x^{2}+\frac{1}{x})
integral of (3^x+2/x)
\int\:(3^{x}+\frac{2}{x})dx
integral from 2 to 5 of 1/(sqrt(x-1))
\int\:_{2}^{5}\frac{1}{\sqrt{x-1}}dx
integral of x/k
\int\:\frac{x}{k}dx
derivative of (4t^2-t)(t^3-8t^2+12)
derivative\:(4t^{2}-t)(t^{3}-8t^{2}+12)
limit as x approaches pi-of x/(cos(x)+1)
\lim\:_{x\to\:π-}(\frac{x}{\cos(x)+1})
integral of 1/(sqrt(z))
\int\:\frac{1}{\sqrt{z}}dz
integral of 4xln(x)
\int\:4x\ln(x)dx
y^'=xy^2
y^{\prime\:}=xy^{2}
derivative of e^xsin(xcos(x))
\frac{d}{dx}(e^{x}\sin(x)\cos(x))
area 7cos(7x),7-7cos(7x),[0, pi/7 ]
area\:7\cos(7x),7-7\cos(7x),[0,\frac{π}{7}]
derivative of 1/((3x+1^2))
\frac{d}{dx}(\frac{1}{(3x+1)^{2}})
f^'(x)=(3x^5-2)^{20}
f^{\prime\:}(x)=(3x^{5}-2)^{20}
integral of 1/(x^{4/3)}
\int\:\frac{1}{x^{\frac{4}{3}}}dx
integral from 1 to R of (ln(4x))/(x^2)
\int\:_{1}^{R}\frac{\ln(4x)}{x^{2}}dx
integral of e/pi
\int\:\frac{e}{π}dx
1
..
1100
1101
1102
1103
1104
..
1823