You can see your coupon in the
user page
Go To QuillBot
Upgrade to Pro
Continue to site
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
Solutions
Integral Calculator
Derivative Calculator
Algebra Calculator
Matrix Calculator
More...
Graphing
Line Graph Calculator
Exponential Graph Calculator
Quadratic Graph Calculator
Sine Graph Calculator
More...
Calculators
BMI Calculator
Compound Interest Calculator
Percentage Calculator
Acceleration Calculator
More...
Geometry
Pythagorean Theorem Calculator
Circle Area Calculator
Isosceles Triangle Calculator
Triangles Calculator
More...
Tools
Notebook
Groups
Cheat Sheets
Worksheets
Study Guides
Practice
Verify Solution
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Upgrade
×
Symbolab for Chrome
Snip & solve on any website
Add to Chrome
Popular Problems
Topics
Pre Algebra
Algebra
Word Problems
Functions & Graphing
Geometry
Trigonometry
Pre Calculus
Calculus
Statistics
Calculations
Graphs
Popular Calculus Problems
limit as x approaches 0+of (cot(x))^{sin(x)}
\lim\:_{x\to\:0+}((\cot(x))^{\sin(x)})
x^2(dy)/(dx)-2xy=3y^4
x^{2}\frac{dy}{dx}-2xy=3y^{4}
integral of sqrt(5/x)
\int\:\sqrt{\frac{5}{x}}dx
derivative of e^{(-x^{1/2}+1/5 x^{-3/5}})
\frac{d}{dx}(e^{(-x^{\frac{1}{2}}+\frac{1}{5}x^{-\frac{3}{5}})})
integral of 1/((x^2+100)^2)
\int\:\frac{1}{(x^{2}+100)^{2}}dx
d/(d{y)}(-9sin(3{x}+{y}{z}))
\frac{d}{d{y}}(-9\sin(3{x}+{y}{z}))
(\partial ^2)/(\partial x\partial y)(ln(4+x^2y^2))
\frac{\partial\:^{2}}{\partial\:x\partial\:y}(\ln(4+x^{2}y^{2}))
integral of 1/(x(ln(x)+ln^2(x)))
\int\:\frac{1}{x(\ln(x)+\ln^{2}(x))}dx
limit as x approaches 2 of 7
\lim\:_{x\to\:2}(7)
derivative of (2x-3)^4(x^2+x+1)^5
derivative\:(2x-3)^{4}(x^{2}+x+1)^{5}
d/(dt)(Ate^t)
\frac{d}{dt}(Ate^{t})
derivative of (-6x/(sqrt(2x-1)))
\frac{d}{dx}(\frac{-6x}{\sqrt{2x-1}})
derivative of (4x^5+7)/(x^3)
derivative\:\frac{4x^{5}+7}{x^{3}}
derivative of ln((x^2+1/(x+4)))
\frac{d}{dx}(\ln(\frac{x^{2}+1}{x+4}))
integral of e^{7x+9}
\int\:e^{7x+9}dx
integral of (sin(x))/(sqrt(2-cos^2(x)))
\int\:\frac{\sin(x)}{\sqrt{2-\cos^{2}(x)}}dx
derivative of e^{4x}cos(7x)
derivative\:e^{4x}\cos(7x)
derivative of 120x
\frac{d}{dx}(120x)
limit as x approaches 0 of (4x^2-3x)/(x^2+0.8x+4/x)
\lim\:_{x\to\:0}(\frac{4x^{2}-3x}{x^{2}+0.8x+\frac{4}{x}})
(d^2)/(dx^2)(sqrt(r)+\sqrt[3]{r})
\frac{d^{2}}{dx^{2}}(\sqrt{r}+\sqrt[3]{r})
derivative of ((x+8)/(x-8))^5
derivative\:(\frac{x+8}{x-8})^{5}
derivative of e^xln(x)
derivative\:e^{x}\ln(x)
sum from n=1 to infinity of 1/(n^2+7n)
\sum\:_{n=1}^{\infty\:}\frac{1}{n^{2}+7n}
derivative of F(x)=(x^4+9x^2-7)^8
derivative\:F(x)=(x^{4}+9x^{2}-7)^{8}
integral from 3 to 9 of 8/x
\int\:_{3}^{9}\frac{8}{x}dx
limit as x approaches 4 of (7+x)/(4-x)
\lim\:_{x\to\:4}(\frac{7+x}{4-x})
limit as x approaches 0 of x/(sin^2(0))
\lim\:_{x\to\:0}(\frac{x}{\sin^{2}(0)})
integral of (e^x)/(sqrt(1+e^{2x))}
\int\:\frac{e^{x}}{\sqrt{1+e^{2x}}}dx
derivative of 1/(x^{14})
\frac{d}{dx}(\frac{1}{x^{14}})
integral of \sqrt[7]{tan(9x)}sec^2(9x)
\int\:\sqrt[7]{\tan(9x)}\sec^{2}(9x)dx
integral of 2^x+8sinh(x)
\int\:2^{x}+8\sinh(x)dx
integral of x/(sqrt(x^4+36))
\int\:\frac{x}{\sqrt{x^{4}+36}}dx
integral of (25)/(x^3-27)
\int\:\frac{25}{x^{3}-27}dx
sum from n=1 to infinity of ((n^3))/(3^{n^2)}
\sum\:_{n=1}^{\infty\:}\frac{(n^{3})}{3^{n^{2}}}
y^{''}-4y^'+7y=te^t
y^{\prime\:\prime\:}-4y^{\prime\:}+7y=te^{t}
f(x)=(2xln(x)+x^2-1)/(x-1)
f(x)=\frac{2x\ln(x)+x^{2}-1}{x-1}
limit as x approaches 0+of (1+x)^{5/x}
\lim\:_{x\to\:0+}((1+x)^{\frac{5}{x}})
(dy)/(dt)=-3(y-4)
\frac{dy}{dt}=-3(y-4)
integral of 5z^3e^z
\int\:5z^{3}e^{z}dz
tangent of f(x)=8x^3,\at x= 1/2
tangent\:f(x)=8x^{3},\at\:x=\frac{1}{2}
derivative of arctan(cos(θ))
derivative\:\arctan(\cos(θ))
implicit (dy}{dx},y=\frac{-5x)/5+3sqrt(x^3)-4/(5sqrt(x))
implicit\:\frac{dy}{dx},y=\frac{-5x}{5}+3\sqrt{x^{3}}-\frac{4}{5\sqrt{x}}
tangent of y=3x^2-5x+9
tangent\:y=3x^{2}-5x+9
y^{''}+9y=3sec(3x)
y^{\prime\:\prime\:}+9y=3\sec(3x)
derivative of 5xe^{2x}
derivative\:5xe^{2x}
limit as x approaches 0 of e^x+2x
\lim\:_{x\to\:0}(e^{x}+2x)
sum from k=3 to infinity of 1/(ln(k))
\sum\:_{k=3}^{\infty\:}\frac{1}{\ln(k)}
integral of 1/(xsqrt(1-4ln^2(x)))
\int\:\frac{1}{x\sqrt{1-4\ln^{2}(x)}}dx
tangent of f(x)=(20x)/(x^2-5),\at x=5
tangent\:f(x)=\frac{20x}{x^{2}-5},\at\:x=5
integral of 1/2 sec^2(x)+4x
\int\:\frac{1}{2}\sec^{2}(x)+4xdx
integral from-5 to 0 of (sqrt(25-x^2))
\int\:_{-5}^{0}(\sqrt{25-x^{2}})dx
y^'=e^{-x}
y^{\prime\:}=e^{-x}
area y=2sin(x),y=2cos(x)
area\:y=2\sin(x),y=2\cos(x)
(\partial)/(\partial y)(e^{6xy}*6x)
\frac{\partial\:}{\partial\:y}(e^{6xy}\cdot\:6x)
integral from 0 to 1 of (\sqrt[4]{x}+1)^2
\int\:_{0}^{1}(\sqrt[4]{x}+1)^{2}dx
limit as x approaches 0 of 8/x-8/(x^2+x)
\lim\:_{x\to\:0}(\frac{8}{x}-\frac{8}{x^{2}+x})
integral of x^2-6xx
\int\:x^{2}-6xxdx
(dy)/(dx)=sqrt(14x+y)-14
\frac{dy}{dx}=\sqrt{14x+y}-14
derivative of x^2+y^2-6x-4y-21
\frac{d}{dx}(x^{2}+y^{2}-6x-4y-21)
derivative of (e+5sqrt(x)/(cos(e^{4x))})
\frac{d}{dx}(\frac{e+5\sqrt{x}}{\cos(e^{4x})})
integral of cos^2(x)sin^5(x)
\int\:\cos^{2}(x)\sin^{5}(x)dx
(\partial)/(\partial u)(ln(u^2+v^2+w^2))
\frac{\partial\:}{\partial\:u}(\ln(u^{2}+v^{2}+w^{2}))
limit as x approaches infinity of e^{x-xs}
\lim\:_{x\to\:\infty\:}(e^{x-xs})
limit as x approaches infinity of sqrt((9x^3+8x-4)/(3-5x+x^3))
\lim\:_{x\to\:\infty\:}(\sqrt{\frac{9x^{3}+8x-4}{3-5x+x^{3}}})
limit as t approaches infinity of-654e^{-(7t)/(2180)}+654
\lim\:_{t\to\:\infty\:}(-654e^{-\frac{7t}{2180}}+654)
derivative of 1/((1-x^2^{3/2)})
\frac{d}{dx}(\frac{1}{(1-x^{2})^{\frac{3}{2}}})
(\partial)/(\partial y)(3xy-4x^2y)
\frac{\partial\:}{\partial\:y}(3xy-4x^{2}y)
integral from 0 to 3/5 of sqrt(9-25x^2)
\int\:_{0}^{\frac{3}{5}}\sqrt{9-25x^{2}}dx
integral of sin^2(3x)
\int\:\sin^{2}(3x)dx
integral from-1 to 2 of sqrt(x)
\int\:_{-1}^{2}\sqrt{x}dx
taylor cos(x+pi/2)
taylor\:\cos(x+\frac{π}{2})
integral from-1 to 1 of 1/2 (6-6x^2)^2
\int\:_{-1}^{1}\frac{1}{2}(6-6x^{2})^{2}dx
integral of t(t+1)^6
\int\:t(t+1)^{6}dt
tangent of f(x)=x^2-1,\at x=2
tangent\:f(x)=x^{2}-1,\at\:x=2
area y=e^x,y=e^{2x},x=0,x=ln(2)
area\:y=e^{x},y=e^{2x},x=0,x=\ln(2)
tangent of f(x)=4x^2-4x+1,\at x=0
tangent\:f(x)=4x^{2}-4x+1,\at\:x=0
derivative of y=3x(a^2-x^2)
derivative\:y=3x(a^{2}-x^{2})
maclaurin 4(1+e^{-0.3t})
maclaurin\:4(1+e^{-0.3t})
integral of ((ln(x))^3)/(2x)
\int\:\frac{(\ln(x))^{3}}{2x}dx
slope of (1/2 ,7),(3,-3/2)
slope\:(\frac{1}{2},7),(3,-\frac{3}{2})
derivative of f(t)=((t^2-4t))/(t+3)
derivative\:f(t)=\frac{(t^{2}-4t)}{t+3}
integral of (2x+3)/(x^2+3x+4)
\int\:\frac{2x+3}{x^{2}+3x+4}dx
limit as x approaches 0+of x^n
\lim\:_{x\to\:0+}(x^{n})
(\partial)/(\partial x)(8xe^{x^2}+y^2)
\frac{\partial\:}{\partial\:x}(8xe^{x^{2}}+y^{2})
limit as x approaches infinity of \sqrt[3]{(5-8x)/(x+3)}
\lim\:_{x\to\:\infty\:}(\sqrt[3]{\frac{5-8x}{x+3}})
integral of (x+4)/(x^2+4)
\int\:\frac{x+4}{x^{2}+4}dx
area (x+2)^3,2x^2-8x+8,0
area\:(x+2)^{3},2x^{2}-8x+8,0
limit as x approaches 1 of x+4-12
\lim\:_{x\to\:1}(x+4-12)
tangent of f(x)=sqrt(x+2),\at x=1
tangent\:f(x)=\sqrt{x+2},\at\:x=1
derivative of f(x)=log_{4}(3x^2+1)
derivative\:f(x)=\log_{4}(3x^{2}+1)
limit as x approaches 14-of 15x+ln(14-x)
\lim\:_{x\to\:14-}(15x+\ln(14-x))
laplacetransform (1+e^{-t})^2
laplacetransform\:(1+e^{-t})^{2}
tangent of y=x^{sin(x)}
tangent\:y=x^{\sin(x)}
derivative of t^2-8t+16
derivative\:t^{2}-8t+16
derivative of (2x^{6x})
\frac{d}{dx}((2x)^{6x})
limit as x approaches-infinity of x^2e^{-3x}
\lim\:_{x\to\:-\infty\:}(x^{2}e^{-3x})
derivative of x-e^x
derivative\:x-e^{x}
integral of (x-1)^{-2}
\int\:(x-1)^{-2}dx
(\partial)/(\partial x)(arccos(x/y))
\frac{\partial\:}{\partial\:x}(\arccos(\frac{x}{y}))
integral of sin^3(11x)cos^2(11x)
\int\:\sin^{3}(11x)\cos^{2}(11x)dx
1
..
170
171
172
173
174
..
1823